【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求BD的長.

【答案】5

【解析】

由勾股定理求得AB=10cm,然后由翻折的性質(zhì)求得BE=4cm,設DC=xcm,則BD=8-xcm,DE=xcm,在△BDE中,利用勾股定理列方程求解即可.

解:∵在RtABC中,兩直角邊AC=6cmBC=8cm,

由折疊的性質(zhì)可知:DC=DE,AC=AE=6cm,∠DEA=C=90°,
BE=AB-AE=10-6=4cm ),∠DEB=90°,
DC=xcm,則BD=8-xcm,DE=xcm
RtBED中,由勾股定理得:BE2+DE2=BD2,
42+x2=8-x2,
解得:x=3,
BD=8-x=5cm).
故答案為:5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°CAB=30°.以AB長為一邊作ABD,且AD=BD,ADB=90°,取AB中點E,連DE、CE、CD.則EDC= °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列幾個命題中正確的個數(shù)為    個.

擲一枚均勻骰子,朝上點數(shù)為負為必然事件(骰子上各面點數(shù)依次為1,23,4,5,6).

5名同學的語文成績?yōu)?/span>9092,92,98,103,則他們平均分為95,眾數(shù)為92

射擊運動員甲、乙分別射擊10次,算得甲擊中環(huán)數(shù)的方差為4,乙擊中環(huán)數(shù)的方差為16,則這一過程中乙較甲更穩(wěn)定.

某部門15名員工個人年創(chuàng)利潤統(tǒng)計表如下,其中有一欄被污漬弄臟看不清楚數(shù)據(jù),所以對于該部門員工個人年創(chuàng)利潤的中位數(shù)為5萬元的說法無法判斷對錯.

個人年創(chuàng)利潤/萬元

10

8

5

3

員工人數(shù)

1

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說:這樓起碼20層!小華卻不以為然:“20層?我看沒有,數(shù)數(shù)就知道了!小明說:有本事,你不用數(shù)也能明白!小華想了想說:沒問題!讓我們來量一量吧!小明、小華在樓體兩側(cè)各選A、B兩點,測量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150,CD=10A=30°,B=45°,(A、CD、B四點在同一直線上)問:

1)樓高多少米?

2)若每層樓按3計算,你支持小明還是小華的觀點呢?請說明理由.(參考數(shù)據(jù):≈1.73,≈1.41≈2.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB3 m,BC4 m,CD12 mDA13 m,∠B90°.小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米30元,試問鋪滿這塊空地共需花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的沿湖道路上有A、B兩個游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.

(1)求觀光島嶼C與碼頭A之間的距離(即AC的長);

(2)游客小明準備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開往碼頭A、B的游船速度相同,設開往碼頭A、B所用的時間分別是t1、t2,求的值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,有一組平行線,正方形的四個頂點分別在上,過點D且垂直于于點E,分別交于點F,G,

(1)AE=____,正方形ABCD的邊長=____;

(2)如圖2,將繞點A順時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,點在直線上,以為邊在的左側(cè)作菱形,使點分別在直線上.

寫出的函數(shù)關(guān)系并給出證明;

=30°,求菱形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D是線段AB的中點,DCBC,作∠EAB=∠B,DEBC,連接CE.若,設BCD的面積為S,則用S表示ACE的面積正確的是(

A.B.3S

C.4SD.

查看答案和解析>>

同步練習冊答案