【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點(diǎn)DAB的中點(diǎn).若點(diǎn)P在線(xiàn)段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD△CQP是否全等,請(qǐng)說(shuō)明理由;

(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD△CQP全等?

【答案】(1)全等(2)vQ=1.5cm/s

【解析】試題分析:(1)根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中BP、CQBD、PC邊的長(zhǎng),根據(jù)SAS判定兩個(gè)三角形全等.

2)根據(jù)全等三角形應(yīng)滿(mǎn)足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;

試題解析:解:(1)全等,理由如下:

t=1秒,BP=CQ=1×1=1厘米,AB=6cm,點(diǎn)DAB的中點(diǎn),BD=3cm

PC=BCBP,BC=4cmPC=4﹣1=3cm,PC=BD

∵∠B=∠C,∴△BPD≌△CPQ

2vPvQ,BPCQ,又∵△BPD≌△CPQ,B=∠C,則BP=CP=2,BD=CQ=3點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間為:t=2秒,vQ=1.5cm/s;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解全校學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.同時(shí)把調(diào)查得到的結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:

1)在這次調(diào)查中,一共抽取了多少名學(xué)生?

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,公交車(chē)部分所對(duì)應(yīng)的圓心角是多少度?

4)若全校有1600名學(xué)生,估計(jì)該校乘坐私家車(chē)上學(xué)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線(xiàn)段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線(xiàn)段;

2)求AC的長(zhǎng);

3)若點(diǎn)E在直線(xiàn)AB上,且EA2cm,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=2,∠A=D,說(shuō)明∠F與∠C相等的理由.

解:∵∠1=2( 已知 ),∠2=4 ( ),

∴∠1=4( 等量代換 )

FBEC( ),

∴∠3=C( 兩直線(xiàn)平行,同位角相等 )

∵∠A=D( ),

EDAC( ),

∴∠F=3 ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知等腰三角形的一邊長(zhǎng)等于8cm,一邊長(zhǎng)等于9cm,求它的周長(zhǎng);

(2)等腰三角形的一邊長(zhǎng)等于6cm,周長(zhǎng)等于28cm,求其他兩邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(5,12),且與邊BC交于點(diǎn)D.若AB=BD,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB8厘米,如果動(dòng)點(diǎn)P在線(xiàn)段AB上以2厘米/秒的速度由A點(diǎn)向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在以1厘米/秒的速度線(xiàn)段BC上由C點(diǎn)向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)過(guò)程停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)AQDP時(shí),t的值為_____秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,A=60°,BC=6,直線(xiàn)MNBC,且分別交邊AB,AC于點(diǎn)M,N,已知直線(xiàn)MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線(xiàn)段AM繞著點(diǎn)A旋轉(zhuǎn),使點(diǎn)M落在邊BC上的點(diǎn)D處,那么BD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠AOB90°,OC平分∠AOB,點(diǎn)P在射線(xiàn)OC上.點(diǎn)E在射線(xiàn)OA上,點(diǎn)F在射線(xiàn)OB上,且∠EPF90°.

1)如圖1,求證:PEPF;

2)如圖2,作點(diǎn)F關(guān)于直線(xiàn)EP的對(duì)稱(chēng)點(diǎn)F′,過(guò)F′點(diǎn)作FHOFH,連接EF′,FHEP交于點(diǎn)M.連接FM,圖中與∠EFM相等的角共有   個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案