如圖所示,△ABC中,M、N是邊BC的三等分點,BE是AC邊上的中線,連接AM、AN,分別交BE于F、G,求BF:FG:GE的值.

解:如答圖所示.
作已知圖形的中心對稱圖形,以E為對稱中心.令BF=a,F(xiàn)G=b,GE=c.
∵M′C∥AM,N′C∥AN
∴a:(2b+2c)=BM:MC=1:2
∴a=b+c,而(a+b):2c=BN:NC=2:1
∴a+b=4c,所以a=c,b=c.
∴BF:FG:GE=5:3:2.
分析:作已知圖形的中心對稱圖形,如圖所示,設(shè)BF=a,F(xiàn)G=b,GE=c,由平行線的性質(zhì)分別求出a,b與c之間的關(guān)系,即可得出其比值.
點評:本題主要考查了平行線分線段成比例的性質(zhì)問題,要求線段的比,通過作平行線構(gòu)造比例線段是一種重要的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.求證:BF=2CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖所示,△ABC中,∠C=90°,DE垂直平分斜邊AB,分別交AB、AC于D、E,∠CAE:∠EAB=5:2,則∠B=
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC中,AB=AC=10,BD是AC邊的高線,DC=2,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC中,BC的垂直平分線交AB于點E,若△ABC的周長為10,BC=4,則△ACE的周長是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC中,AB=AC,BD⊥AC,垂足為D,求∠DBC與∠A的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案