證明:(1)在△ABC中,
∵AC=BC,
∴∠CAB=∠CBA,
∵∠CBA=∠CDE,(同弧上的圓周角相等),
∴∠ACB=∠ECD,
∴∠ACB-∠ACD=∠ECD-∠ACD,
∴∠ACE=∠BCD.
在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴AE=BD.
(2)的結(jié)論應(yīng)該為AD+BD=
CD
證明:作CF⊥CD,交DA的延長線于F,
∵AC⊥BC,AC=BC,
∴O在AB上,∠CAB=∠CBA=45°,
∴∠CDA=∠CBA=45°,
∴∠F=180°-∠FCD-∠CDA=45°=∠CDA,
∴CF=CD,
∵∠FCD=∠ACB=90°,
∴∠FCA=∠BCD,
在△ACF和△BCD中
,
∴△ACF≌△BCD,
∴BD=AF,
∴AD+BD=AD+AF=DF,
在△DCF中,由勾股定理得:DF=
=
CD.
分析:(1)根據(jù)等腰三角形性質(zhì)求出∠CAB=∠CBA,∠E=∠CDE,根據(jù)∠CBA=∠CDA推出∠ECD=∠BCA,推出∠ECA=∠BCD,證△AEC和△BDC全等即可.
(2)根據(jù)等腰直角三角形性質(zhì)求出∠ABC=45°,根據(jù)圓周角定理求出∠DCA=∠CBA=45°,根據(jù)三角形內(nèi)角和定理求出∠F=45°,推出CF=CD,根據(jù)SAS證△ACF≌△BCD,推出AF=BD,根據(jù)勾股定理求出即可.
點評:本題考查了三角形的外接圓和外心,圓周角定理,三角形的內(nèi)角和定理,勾股定理,等腰直角三角形性質(zhì),相似三角形的性質(zhì)和判定等知識點的應(yīng)用,關(guān)鍵是根據(jù)題意證出△ACE≌△BCD,解題思路是求出證三角形全等的三個條件,題目比較典型,綜合性強.