【題目】小李以每千克0.8元的價格從批發(fā)市場購進(jìn)若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完;銷售金額與賣西瓜千克數(shù)之間的關(guān)系如圖所示,那么小李賺了_________..

【答案】36

【解析】

要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.

由圖中可知,沒有降價前40千克西瓜賣了64元,那么售價為:64÷40=1.6元,

降價0.4元后單價變?yōu)?/span>1.6-0.4=1.2,錢變成了76元,說明降價后賣了76-64=12元,那么降價后賣了12÷1.2=10千克,

總質(zhì)量將變?yōu)?/span>40+10=50千克,那么小李的成本為:50×0.8=40元,賺了76-40=36元,

故答案為:36.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R.對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關(guān)聯(lián)點. 在平面直角坐標(biāo)系xOy中,等邊△ABC的三個頂點的坐標(biāo)分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).

(1)已知點D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關(guān)聯(lián)點的是;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為 .當(dāng)Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運(yùn)動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為千克),在甲園所需總費用為),在乙園所需總費用為),之間的函數(shù)關(guān)系如圖所示,折線OAB表示之間的函數(shù)關(guān)系.

(1)甲采摘園的門票是 元,兩個采摘園優(yōu)惠前的草莓單價是每千克 元;

(2)當(dāng)>10時,求的函數(shù)表達(dá)式;

(3)游客在春節(jié)期間采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使關(guān)于x的分式方程 + =4的解為正數(shù),且使關(guān)于y的不等式組 的解集為y<﹣2,則符合條件的所有整數(shù)a的和為(
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊ABC

(1)如圖1,PQBC邊上兩點,AP=AQ,∠BAP=20°,AQB的度數(shù)

(2)P,QBC邊上的兩個動點不與點BC重合),P在點Q的左側(cè)AP=AQ,Q關(guān)于直線AC的對稱點為M連接AM,PM.

依題意將圖2補(bǔ)全;小明通過觀察、實驗,提出猜想:在點P,Q運(yùn)動的過程中,始終有PA=PM,小明把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證PA=PM,只需證APM是等邊三角形.

想法2:在BA上取一點N,使得BN=BP,要證PA=PM只需證ANP≌△PCM.……

請你參考上面的想法,幫助小明證明PA=PM一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.
(1)如圖1,若AB=3 ,BC=5,求AC的長;
(2)如圖2,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)1,3,5,12,a,其中整數(shù)a是這組數(shù)據(jù)的中位數(shù),則該組數(shù)據(jù)的平均數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進(jìn)A型轎車10輛,B型轎車15輛;用300萬元可購進(jìn)A型轎車8輛,B型轎車18.

(1)AB兩種型號的轎車每輛分別多少元?

(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準(zhǔn)備用不超過400萬元購進(jìn)AB兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了若干居民的月均用水量(單位:t),并繪制了不完整的樣本的頻數(shù)分布表的頻數(shù)分布直方圖(如圖)

根據(jù)上述圖表回答下列問題:

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

0.04

3≤x<4

12

0.24

4≤x<5

5≤x<6

10

0.2

6≤x<7

0.12

7≤x<8

3

0.06

8≤x<9

2

0.04

(1)小明同學(xué)共調(diào)查了多少戶居民的月均用水量;

(2)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

(3)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的等用水量家庭大約有多少戶?

查看答案和解析>>

同步練習(xí)冊答案