(12分)如圖,在半徑是2的⊙O中,點Q為優(yōu)弧的中點,圓心角∠MON=60°,在上有一動點P,且點P到弦MN所在直線的距離。

1.(1)求弦MN的長;

2.(2)試求陰影部分面積的函數(shù)關系式,并寫出自變量的取值范圍;

3.(3)試分析比較,當自變量為何值時,陰影部分面積的大小關系。

 

【答案】

 

1.解:(1)∵OM=ON,∠MON=60°  ∴△MON是等邊三角形

∴OM=ON=2     …………………………  3分

2.(2)作OH⊥MN于H點,   ∴NH=MN=1

在Rt△OHN中,OH2 = ON2 – NH2  OH=…………………………6分

即:……………………………9分

3.(3)令,即      ∴

時,;

時,

,∴…………………………12分

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在半徑是4的⊙O中,點Q為優(yōu)弧
MN
的中點,圓心角∠MON=60°,點P在
MQ
(M點精英家教網(wǎng)除外)上運動,設點P到弦MN的距離為x,△OMN的面積是S.
(1)求弦MN的長;
(2)試求陰影部分面積y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)試分析比較,當自變量x為何值時,陰影部分面積y與S的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑是2的⊙O中,點Q為優(yōu)弧MN的中點,圓心角∠MON=60°,在NQ上有一動點P,且點精英家教網(wǎng)P到弦MN的距離為x.
(1)求弦MN的長;
(2)試求陰影部分面積y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)試分析比較,當自變量x為何值時,陰影部分面積y與S扇形OMN的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:在半徑是2的⊙O中,點Q為優(yōu)弧MN的中點,圓心角∠MON=60°,在弧QN上有一動點P,且點P到弦MN的距離為x.
(1)求弦MN的長;
(2)試求陰影部分面積y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)設陰影部分面積為y,扇形OMN的面積為S,試分析,當自變量x在何取值范圍時,y>S,y=S,y<S?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖,在半徑是2的⊙O中,點Q為優(yōu)弧的中點,圓心角∠MON=60°,在上有一動點P,且點P到弦MN所在直線的距離。

【小題1】(1)求弦MN的長;
【小題2】(2)試求陰影部分面積的函數(shù)關系式,并寫出自變量的取值范圍;
【小題3】(3)試分析比較,當自變量為何值時,陰影部分面積的大小關系。

查看答案和解析>>

同步練習冊答案