如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(yíng)(,0),B(2,0),且與軸交于點(diǎn)C.


(1)求該拋物線(xiàn)的解析式,并判斷△ABC的形狀;
(2)點(diǎn)P是x軸下方的拋物線(xiàn)上一動(dòng)點(diǎn), 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點(diǎn)P的坐標(biāo);
(3) 在此拋物線(xiàn)上是否存在點(diǎn)Q,使得以A,C,B,Q四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在, 求出Q點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(1)拋物線(xiàn)的解析式為,△ABC是直角三角形
(2)P點(diǎn)的坐標(biāo)為(,) 或(,
(3)存在,滿(mǎn)足題目條件的點(diǎn)Q為(,)或(-,9)

解析試題分析:(1) 根據(jù)題意,將A(,0),B(2,0)代入中,解得
拋物線(xiàn)的解析式為      
當(dāng)=0時(shí),. ∴點(diǎn)C的坐標(biāo)為(-1,0).
∴在△AOC中,AC===。
在△BOC中,BC===。 
AB=OA+OB=+2=,∵AC 2+BC 2=+5=="AB" 2,
∴△ABC是直角三角形。              
(2) 設(shè)P點(diǎn)坐標(biāo)為(x,),交CO于E
∵四邊形POPC是菱形,∴PC=PO.
連結(jié) 則PE⊥CO于E,∴OE=EC= ∴=
=   解得=,=
∴P點(diǎn)的坐標(biāo)為(,) 或(,
(3)存在。由(1)知,AC^BC,設(shè)Q點(diǎn)坐標(biāo)為(,
①若以BC為底邊,則BC//AQ,∴∠ABC=∠QAB  如圖① 
過(guò)點(diǎn)Q作QE⊥x軸于點(diǎn)E,則有△QAE∽△ABC  ∴
∴      解得1=   2= -(舍去)。
當(dāng)=時(shí),y= ,∴點(diǎn)Q(,)。   
k若以AC為底邊,則BQ//AC,∴∠CAB=∠QBA
過(guò)點(diǎn)Q作QF⊥x軸于點(diǎn)F,則有△QBF∽△BAC  ∴
     解得1=   2=" 2" (舍去)。
當(dāng)=時(shí),y=9,∴點(diǎn)Q(,9)。   
綜上所述,滿(mǎn)足題目條件的點(diǎn)Q為(,)或(-,9)。
考點(diǎn):拋物線(xiàn),勾股定理逆定理,相似三角形
點(diǎn)評(píng):本題考查拋物線(xiàn),勾股定理逆定理,相似三角形,解答本題需要考生掌握待定系數(shù)法,會(huì)用待定系數(shù)法求拋物線(xiàn)的解析式,熟悉勾股定理逆定理,會(huì)用其來(lái)判定一個(gè)三角形是否是直角三角形,掌握相似三角形的方法,會(huì)證明兩個(gè)三角形相似

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)與x軸交于A(yíng)(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

(1)求拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,在其對(duì)稱(chēng)軸的右側(cè)的拋物線(xiàn)上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)M是拋物線(xiàn)上一點(diǎn),以B,C,D,M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B坐標(biāo)為(2,3),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線(xiàn)的函數(shù)關(guān)系表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)E為線(xiàn)段OC上一動(dòng)點(diǎn),以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點(diǎn)F恰好落在線(xiàn)段AC上時(shí),求線(xiàn)段OE的長(zhǎng);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點(diǎn)M,DG所在的直線(xiàn)與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在上述平移過(guò)程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時(shí),請(qǐng)直接寫(xiě)出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時(shí),S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.

(1)求直線(xiàn)AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線(xiàn)被直線(xiàn)AB和拋物線(xiàn)截得兩線(xiàn)段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線(xiàn)段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)所對(duì)應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線(xiàn)的頂點(diǎn),求直線(xiàn)MC對(duì)應(yīng)的函數(shù)解析式;
(3)試說(shuō)明直線(xiàn)MC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(6,0),B(3,),C(1,),動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→ C→O的線(xiàn)路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)以O(shè)、P、Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請(qǐng)求出t的值,若不能,請(qǐng)說(shuō)明理由;
(4)經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的對(duì)稱(chēng)軸、直線(xiàn)OB和PQ能夠交于一點(diǎn)嗎?若能,請(qǐng)求出此時(shí)t的值(或范圍),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)y=的圖象如圖,以下結(jié)論:
①m<0;
②在每個(gè)分支上y隨x的增大而增大;
③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a<b;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.
其中正確的個(gè)數(shù)是(  )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知反比例函數(shù)的圖象上有兩點(diǎn)A(x1,y1)、B(x2,y2),若y1>y2,則x1-x2的值是( 。

A.正數(shù) B.負(fù)數(shù) C.非正數(shù) D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣3x+3與x軸、y軸分別交于A(yíng)、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線(xiàn)(k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線(xiàn)上,則a的值是( 。

A.1             B.2            C.3           D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案