如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是


  1. A.
    ∠ABD=∠C
  2. B.
    ∠ADB=∠ABC
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.
解答:∵∠A是公共角,
∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似);
故A與B正確;
時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似);
故D正確;
時,∠A不是夾角,故不能判定△ADB與△ABC相似,
故C錯誤.
故選C.
點評:此題考查了相似三角形的判定.此題難度不大,注意掌握有兩角對應相等的三角形相似與兩組對應邊的比相等且夾角對應相等的兩個三角形相似定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,點E在△ABC外部,點D在邊BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,請說明△ABC≌△ADE的道理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點D在△ABC的邊BC上,且與B,C不重合,過點D作AC的平行線DE交AB于E,作AB的平行線DF交精英家教網(wǎng)AC于點F.又知BC=5.
(1)設△ABC的面積為S.若四邊形AEFD的面積為
2
5
S
;求BD長.
(2)若AC=
2
AB
;且DF經(jīng)過△ABC的重心G,求E,F(xiàn)兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、已知:如圖,點D在△ABC的邊BC上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:△AED≌△DFA;
(2)若AD平分∠BAC.求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D在△ABC邊BC上,且∠ADC=∠BAC,若AC=x,CD=x-2,BD=2x-2,則x的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點D在△ABC的邊BC上,DC=AC=BD,∠ACB的平分線CF交AD于F,點E是AB的中點,連接EF.
(1)求證:△AEF∽△ABD.
(2)若△AEF的面積為1,求△ABC的面積.

查看答案和解析>>

同步練習冊答案