已知:如圖,在四邊形ABCD中,對角線AC、BD相交于點O,且AC=BD,E、F分別是AB、CD的中點,EF分別交BD、AC于點G、H.求證:OG=OH.

解:取BC邊的中點M,連接EM,F(xiàn)M,
∵M、F分別是BC、CD的中點,
∴MF∥BD,MF=BD,
同理:ME∥AC,ME=AC,
∵AC=BD
∴ME=MF
∴∠MEF=∠MFE,
∵MF∥BD,
∴∠MFE=∠OGH,
同理,∠MEF=∠OHG,
∴∠OGH=∠OHG
∴OG=OH.
分析:取BC邊的中點M,連接EM,F(xiàn)M,則根據(jù)三角形的中位線定理,即可證得△EMF是等腰三角形,根據(jù)等邊對等角,即可證得∠MEF=∠MFE,然后根據(jù)平行線的性質(zhì)證得∠OGH=∠OHG,根據(jù)等角對等邊即可證得.
點評:本題考查了三角形的中位線定理,正確證明△EMF是等腰三角形是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點E在BC上,點F在AD上,AF=CE,EF與對角線BD相交于點O.求證:O是BD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請設計兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點E、F分別是邊AB、CD的中點,AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習冊答案