已知拋物線y=x2+4x+m(m為常數(shù))經(jīng)過(guò)點(diǎn)(0,4)
(1)求m的值;
(2)將該拋物線先向右、再向下平移得到另一條拋物線.已知這條平移后的拋物線滿足下述兩個(gè)條件:它的對(duì)稱軸(設(shè)為直線l2)與平移前的拋物線的對(duì)稱軸(設(shè)為l1)關(guān)于y軸對(duì)稱;它所對(duì)應(yīng)的函數(shù)的最小值為-8.
①試求平移后的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
②試問(wèn)在平移后的拋物線上是否存在著點(diǎn)P,使得以3為半徑的⊙P既與x軸相切,又與直線l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線l2被⊙P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
(1)依題意得:02+4×0+m=4,解得m=4 (3分) (2)①由(1)得:y=x2+4x+4=(x+2)2,∴對(duì)稱軸為直線l1:x=-2 (4分) 依題意得平移后的拋物線的對(duì)稱軸為直線直線l2:x=2 (5分) 故設(shè)平移后的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為y=(x-2)2+k (6分) ∵此函數(shù)最小值為-8,∴k=-8 即平移后的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為y=(x-2)2-8=x2-4x-4 (7分) 、诖嬖冢碛扇缦拢 由①知平移后的拋物線的對(duì)稱軸為直線l2:x=2 當(dāng)點(diǎn)P在x軸上方時(shí),∵⊙P與x軸相切,故令y=x2-4x-4=3, 解得x=2± (8分) 此時(shí)點(diǎn)P1(2+,3),P2(2-,3)與直線x=2之距均為, 故點(diǎn)P1、P2不合題意,應(yīng)舍去. (9分) 當(dāng)點(diǎn)P在x軸下方時(shí),∵⊙P與x軸相切,故令y=x2-4x-4=-3, 解得x=2± (10分) 此時(shí)點(diǎn)P3(2+,-3),P4(2-,-3)與直線x=2之距均為, ∵<3,∴⊙P3、⊙P4均與直線l2:x=2相間, 故點(diǎn)P3、P4符合題意. (11分) 此時(shí)弦AB=2× 綜上,點(diǎn)P的坐標(biāo)為(2+,-3)或(2-,-3), 直線l2被⊙P所截得的弦AB的長(zhǎng)為4 (13分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省營(yíng)口市中考模擬(一)數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn), A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)填空:點(diǎn)C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(zhǎng)(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省營(yíng)口市中考模擬(一)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn), A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)填空:點(diǎn)C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(zhǎng)(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011屆江蘇省太倉(cāng)市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:填空題
已知拋物線y=x2-x-1與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值是 ▲ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com