如圖,在四邊形ABCD中,E是BC邊的中點(diǎn),連結(jié)DE并延長(zhǎng),交AB的延長(zhǎng)線于F點(diǎn),.添加一個(gè)條件,使四邊形ABCD是平行四邊形.你認(rèn)為下面四個(gè)條件中可選擇的是(  )

A.        B.       C.       D.

 

【答案】

D

【解析】

試題分析:根據(jù)平行四邊形的判定定理依次分析各項(xiàng)即可判斷。

∵∠F=∠CDE

∴CD∥AF

在△DEC與△FEB中,

∠DCE=∠EBF,CE=BE(點(diǎn)E為BC的中點(diǎn)),∠CED=∠BEF

∴△DEC≌△FEB

∴DC=BF,∠C=∠EBF

∴AB∥DC

∵AB=BF

∴DC=AB

∴四邊形ABCD為平行四邊形

故選D.

考點(diǎn):本題考查的是平行四邊形的判定

點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握平行四邊形的判定定理:

①兩組對(duì)邊分別平行的四邊形是平行四邊形;

②兩組對(duì)邊分別相等的四邊形是平行四邊形;

③兩組對(duì)角分別相等的四邊形是平行四邊形;

④對(duì)角線互相平分的四邊形是平行四邊形;

⑤一組對(duì)邊平行且相等的四邊形是平行四邊形.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案