在等腰△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn),DE∥AC交直線AB于E,DF∥AB交直線AC于點(diǎn)F,解答下列各問:
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),有DE+DF=AB,請(qǐng)你說明理由;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),請(qǐng)你參考(1)畫出正確的圖形,并寫出線段DE、DF、AB之間的關(guān)系(不要求證明).

【答案】分析:(1)由題意可得四邊形AEDF時(shí)平行四邊形,所以DF=AE,通過平行線可得到角相等,轉(zhuǎn)化為線段相等,進(jìn)而可得出結(jié)論.
(2)依據(jù)題意,作出圖形即可,而對(duì)于線段DE、DF、AB之間的關(guān)系,由(1)可得四邊形AEDF時(shí)平行四邊形,進(jìn)而通過線段之間的轉(zhuǎn)化即可得出結(jié)論.
解答:解:(1)∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∴DF=AE,
又AB=AC,
∴∠B=∠BCA,
DE∥AC,
∴∠BDE=∠BCA,
∴∠B=∠BDE,
∴BE=DE,
∴DE+DF=BE+AE=AB.

(2)如圖,DE-DF=AB
∵四邊形AFDE是平行四邊形,
∴AE=DF,
∴∠B=∠BDE,
∴BE=DE,
∴DE-DF=AB.
點(diǎn)評(píng):本題主要考查平行四邊形的判定及性質(zhì)以及等腰三角形的性質(zhì),能夠熟練求解,并能作出簡(jiǎn)單的圖形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,在等腰△ABC中,點(diǎn)D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對(duì)全等三角形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點(diǎn)是點(diǎn)D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點(diǎn)M旋轉(zhuǎn),使旋轉(zhuǎn)后的點(diǎn)D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點(diǎn)N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長(zhǎng)是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說明DE=DF;
(2)求EF長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案