我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:

存放天數(shù)x(天)246810
市場價(jià)格y(元)3234363840

但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價(jià)格收購這種野生1180千克,存放入冷庫中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請(qǐng)你確定此時(shí)市場的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):數(shù)學(xué)公式

解:由題意得:
(1)y=x+30,
P=y(1000-3x)=(x+30)(1000-3x)=-3x2+910x+30000;

(2)w=P-310x-1000×30=-3x2+910x+30000-310x-1000×30=-3x2+600x=-3(x-100)2+30000
∵0<x≤110,
∴當(dāng)x=100時(shí),利潤w最大,最大利潤為30000元,
∴該公司將這批野生茵存放100天后出售可獲得最大利潤30000元;

(3)由(2)可知,該公司以最大利潤出售這批野生菌的當(dāng)天,市場價(jià)格為130元
設(shè)再次進(jìn)貨的野生茵存放a天,則利潤
w1=(a+130)(1180-3a)-310a-130×1180,
=-3a2+480a,
∴兩次的總利潤為w2=-3a2+480a+30000,
由-3a2+480a+30000=45000,
解得,
∵-3<0,
∴當(dāng)時(shí),兩次的總利潤不低于4.5萬元,
又∵0<x≤110,,當(dāng)a≈43時(shí),此時(shí)市場價(jià)格最低,市場最低價(jià)格應(yīng)為130+43=173元.
分析:根據(jù)表格規(guī)律判斷函數(shù)類別,就要對(duì)一次函數(shù)、二次函數(shù)和反比例函數(shù)的圖象,性質(zhì)有充分的了解,從表格可以看出,y隨x的增大而均勻地增大,屬于一次函數(shù).本題屬于營銷問題,根據(jù):利潤=銷售總額-收購成本-各種費(fèi)用.再利用相應(yīng)的函數(shù)關(guān)系式解決實(shí)際問題.
點(diǎn)評(píng):本題考查一次函數(shù)、二次函數(shù)求法及二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:
存放天數(shù)x(天) 2 4 6 8 10
市場價(jià)格y(元) 32 34 36 38 40
但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價(jià)格收購這種野生1180千克,存放入冷庫中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請(qǐng)你確定此時(shí)市場的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

我市有一種可食用的野生菌,上市時(shí),外商李經(jīng)理按市場價(jià)格30元/千克收購了這種野生菌1 000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格將以每天每千克上漲1元;但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存160天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
 (1)設(shè)x天后每千克該野生菌的市場價(jià)格為y元,試寫出y與x之間的函數(shù)關(guān)系式.  
(2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出P    與x之間的函數(shù)關(guān)系式.  
(3)李經(jīng)理將這批野生菌存放多少天后出售可獲得最大利潤W元?(利潤=銷售總額-收購成本-各種費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市西南師大附中九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:
存放天數(shù)x(天)246810
市場價(jià)格y(元)3234363840
但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價(jià)格收購這種野生1180千克,存放入冷庫中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請(qǐng)你確定此時(shí)市場的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市一中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:
存放天數(shù)x(天)246810
市場價(jià)格y(元)3234363840
但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價(jià)格收購這種野生1180千克,存放入冷庫中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請(qǐng)你確定此時(shí)市場的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年重慶市一中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

我市有一種可食用的野生菌,上市時(shí),某經(jīng)銷公司按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場價(jià)格y(元)與存放天數(shù)x(天)之間的部分對(duì)應(yīng)值如下表所示:
存放天數(shù)x(天)246810
市場價(jià)格y(元)3234363840
但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存110天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式;若存放x天后,將這批野生茵一次性出售,設(shè)這批野生菌的銷售總額為P元,試求出P與x之間的函數(shù)關(guān)系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費(fèi)用)
(3)該公司以最大利潤將這批野生菌一次性出售的當(dāng)天,再次按市場價(jià)格收購這種野生1180千克,存放入冷庫中一段時(shí)間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請(qǐng)你確定此時(shí)市場的最低價(jià)格應(yīng)為多少元?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案