若一個直角三角形是軸對稱圖形,則它的兩個銳角的度數(shù)分別為________.

45°,45°
分析:根據(jù)軸對稱圖形的概念求解.
解答:一個直角三角形是軸對稱圖形,則它的兩個直角邊相等,就是等腰三角形.
故它的兩個銳角的度數(shù)分別為45°,45°.
點評:掌握好軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點,點精英家教網(wǎng)P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P.
(1)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(2)當k為何值時,以⊙P與直線l的兩個交點和圓心P為頂點的三角形是正三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,O是坐標原點,直線y=-
3
4
x+9
與x軸,y軸分別交于B,C兩點,拋物線y=-
1
4
x2+bx+c
經(jīng)過B,C兩點,與x軸的另一個交點為點A,動點P從點A出發(fā)沿AB以每秒3個單位長度的速度向點B運動,運動時間為t(0<t<5)秒.
(1)求拋物線的解析式及點A的坐標;
(2)以O(shè)C為直徑的⊙O′與BC交于點M,當t為何值時,PM與⊙O′相切?請說明理由.
(3)在點P從點A出發(fā)的同時,動點Q從點B出發(fā)沿BC以每秒3個單位長度的速度向點C運動,動點N從點C出發(fā)沿CA以每秒
3
10
5
個單位長度的速度向點A運動,運動時間和點P相同.
①記△BPQ的面積為S,當t為何值時,S最大,最大值是多少?
②是否存在△NCQ為直角三角形的情形?若存在,求出相應(yīng)的t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知A(-1,0),E(0,-
2
2
),以點A為圓心,以AO長為半徑的圓交x軸于另一點B,過點B作BF∥AE交⊙A于點F,直線FE交x軸于點C.
(1)求證:直線FC是⊙A的切線;
(2)求點C的坐標及直線FC的解析式;
(3)有一個半徑與⊙A的半徑相等,且圓心在x軸上運動的⊙P.若⊙P與直線FC相交于M,N兩點,是否存在這樣的點P,使△PMN是直角三角形?若存在,求出點P的坐標;若不存在,請精英家教網(wǎng)說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)已知函數(shù)y=kx2-2x+
3
2
(k是常數(shù))
(1)若該函數(shù)的圖象與x軸只有一個交點,求k的值;
(2)若點M(1,k)在某反比例函數(shù)的圖象上,要使該反比例函數(shù)和二次函數(shù)y=kx2-2x+
3
2
都是y隨x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)拋物線y=kx2-2x+
3
2
與x軸交于A(x1,0),B(x2,0)兩點,且x1<x2,x12+x22=1.在y軸上,是否存在點P,使△ABP是直角三角形?若存在,求出點P及△ABP的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系.F是BC上的一個動點(不與B、C重合),過F點的反比例函數(shù)y=
k
x
(k>0)
的圖象與AC邊交于點E.
(1)填空:點C的坐標是
(6,4)
(6,4)
;
(2)連接 OE、OF,若tan∠BOF=
4
9
,求∠AOE的度數(shù);
(3)是否存在這樣的點F,使得△OEF為直角三角形?若存在,求出此時點F坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案