【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
【答案】(1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,F(xiàn)O=CO,
∴OE=OF;
(2)解:∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF==10,
∴OC=EF=5;
(3)答:當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.
證明:當O為AC的中點時,AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵∠ECF=90°,
∴平行四邊形AECF是矩形.
【解析】(1)根據(jù)平行線的性質(zhì)以及角平分線的性質(zhì)得出∠1=∠2,∠3=∠4,進而得出答案;
(2)根據(jù)已知得出∠2+∠4=∠5+∠6=90°,進而利用勾股定理求出EF的長,即可得出CO的長;
(3)根據(jù)平行四邊形的判定以及矩形的判定得出即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)若∠AOC=30°時,則∠DOE的度數(shù)為_____;
(2)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖②的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
(3)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖③的位置,其他條件不變.直接寫出∠AOC和∠DOE的度數(shù)之間的關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將甲、乙、丙三個正分數(shù)化為最簡分數(shù)后,其分子分別為6、15、10,其分母的最小公倍數(shù)為360.判斷甲、乙、丙三數(shù)的大小關(guān)系為何?( )
A. 乙>甲>丙 B. 乙>丙>甲 C. 甲>乙>丙 D. 甲>丙>乙
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2015年年收入200美元,預(yù)計2017年年收入將達到1000美元,設(shè)2015年到2017年該地區(qū)居民年人均收入平均增長率為x,可列方程為( )
A. 200(1+2x)=1000B. 200+2x=1000
C. 200(1+x2)=1000D. 200(1+x)2=1000
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(點A在點B的左側(cè)),與y軸相交于點C,點D的坐標是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點F,當△ADF的面積最大時,有一線段MN=(點M在點N的左側(cè))在直線BD上移動,首尾順次連接點A、M、N、F構(gòu)成四邊形AMNF,請求出四邊形AMNF的周長最小時點N的橫坐標;
(3)如圖3,將△DBC繞點D逆時針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點P,直線B′C′與直線DC交于點Q,當△CPQ是等腰三角形時,求CP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M,N為坐落于公路兩旁的村莊,如果一輛施工的機動車由A向B行駛,產(chǎn)生的噪音會對兩個村莊造成影響.
(1)當施工車行駛到何處時,產(chǎn)生的噪音分別對兩個村莊影響最大?在圖中標出來.
(2)當施工車從A向B行駛時,產(chǎn)生的噪音對M,N兩個村莊的影響情況如何?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com