如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)c(0,3).
(1)求此拋物線所對(duì)應(yīng)函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,在其對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)A、B的坐標(biāo)設(shè)拋物線餓表達(dá)式是y=a(x+1)(x-3),把C的坐標(biāo)代入求出a,即可得出答案;
(2)求出D的坐標(biāo)和對(duì)稱軸的表達(dá)式,分為兩種情況:①若以CD為底邊,則PC=PD.設(shè)P點(diǎn)坐標(biāo)為(a,b),根據(jù)勾股定理求出b=4-a,代入拋物線求出a、b,②若以CD為一腰,根據(jù)拋物線對(duì)稱性得出點(diǎn)P與點(diǎn)C關(guān)于直線x=1對(duì)稱,即可求出P的坐標(biāo).
解答:解:(1)拋物線與x軸交于點(diǎn)(-1,0)和(3,0),
設(shè)表達(dá)式為y=a(x+1)(x-3),
又點(diǎn)(0,3)在拋物線上,則3=a×1×(-3),
∴a=-l
故所求的表達(dá)式為:y=-(x+1)(x-3),即y=-x2+2x+3.

(2)存在.
由y=-x2+2x+3=-(x-1)2+4知,D點(diǎn)坐標(biāo)為(1,4),對(duì)稱軸為x=1,
①若以CD為底邊,則PC=PD.設(shè)P點(diǎn)坐標(biāo)為(a,b),
由勾股定理,得:a2+(3-b)2=(a-1)2+(4-b)2,
即b=4-a.      
又點(diǎn)P(a,b)在拋物線上,b=-a2+2a+3,
則 4-a=-a2+2a+3.整理,得a2-3a+1=0,
解,得(不合題意,舍去)

,
P(,);
②若以CD為一腰,因點(diǎn)P在對(duì)稱軸右側(cè)的拋物線上,由拋物線對(duì)稱性知,點(diǎn)P與點(diǎn)C關(guān)于直線x=1對(duì)稱,
此時(shí)點(diǎn)P坐標(biāo)為(2,3),
綜上所述,符合條件的點(diǎn)P坐標(biāo)為()或(2,3).
點(diǎn)評(píng):本題考查了用待定系數(shù)法求拋物線的解析式,勾股定理,等腰三角形的判定等知識(shí)點(diǎn)的運(yùn)用,培養(yǎng)學(xué)生運(yùn)用性質(zhì)進(jìn)行計(jì)算的能力,用的數(shù)學(xué)思想是分類討論思想,題目綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長(zhǎng)最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說(shuō)理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案