(2013•棗莊)如圖,在邊長(zhǎng)為2的正方形ABCD中,M為邊AD的中點(diǎn),延長(zhǎng)MD至點(diǎn)E,使ME=MC,以DE為邊作正方形DEFG,點(diǎn)G在邊CD上,則DG的長(zhǎng)為(  )
分析:利用勾股定理求出CM的長(zhǎng),即ME的長(zhǎng),有DE=DG,所以可以求出DE,進(jìn)而得到DG的長(zhǎng).
解答:解:∵四邊形ABCD是正方形,M為邊DA的中點(diǎn),
∴DM=
1
2
AD=
1
2
DC=1,
∴CM=
DC2+DM2
=
5
,
∴ME=MC=
5
,
∵ED=EM-DM=
5
-1,
∵四邊形EDGF是正方形,
∴DG=DE=
5
-1.
故選D.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)和勾股定理的運(yùn)用,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊)如圖,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)E為AC的中點(diǎn),連接DE,則△CDE的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊)如圖,AB是⊙O的直徑,AC是弦,直線(xiàn)EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線(xiàn);
(2)求證:AC2=AD•AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊)如圖,AB∥CD,∠CDE=140°,則∠A的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊)如圖,已知線(xiàn)段OA交⊙O于點(diǎn)B,且OB=AB,點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),那么∠OAP的最大值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案