如圖,△ABC內(nèi)接于⊙O,∠OBC=25°,則∠A的度數(shù)為( )

A.55°
B.65°
C.110°
D.130°
【答案】分析:首先連接OC,由OB=OC,得∠OCB=∠OBC,而∠OBC=25°,從而得到∠OCB=∠OBC=25°,根據(jù)三角形內(nèi)角和定理可算出∠COB的度數(shù),再由圓周角定理得到∠A=∠COB.
解答:解:連接OC,
∵OB=OC,∠OBC=25°,
∴∠OCB=∠OBC=25°,
∴∠COB=180°-25°-25°=130°,
∴∠A=∠COB=×130°=65°.
故選B.
點評:此題主要考查了圓周角定理,等腰三角形的性質(zhì)和三角形的內(nèi)角和定理.關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊答案