精英家教網(wǎng)如圖,在四邊形ABCD中,設(shè)∠BAD+∠ADC=270°,且E、F分別為AD、BC的中點(diǎn),EF=4,陰影部分分別是以AB、CD為直徑的半圓,則這兩個(gè)半圓面積的和是
 
(圓周率為π).
分析:連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=
1
2
AB,F(xiàn)M=
1
2
CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=16,根據(jù)圓的面積公式求出陰影部分的面積即可.
解答:精英家教網(wǎng)解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長(zhǎng)EM交BC于N,
∵∠BAD+∠ADC=270°,
∴∠ABC+∠C=360°-270°=90°,
∵E、F、M分別是AD、BC、BD的中點(diǎn),
∴EM=
1
2
AB,F(xiàn)M=
1
2
CD,EM∥AB,F(xiàn)M∥CD,
∴∠ABC=∠ENC,∠MFN=∠C,
∴∠MNF+∠MFN=90°,
∴∠NMF=180°-90°=90°,
∴∠EMF=90°,
由勾股定理得:ME2+FM2=EF2=42=16,
∴陰影部分的面積是:
1
2
π(
AB
2
)
2
+
1
2
π
(
CD
2
)
2
=
1
2
π×(ME2+FM2)=
1
2
π×16=8π.
故答案為:8π.
點(diǎn)評(píng):本題主要考查對(duì)勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識(shí)點(diǎn)的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案