【題目】有四部不同的電影,分別記為A,B,C,D.
(1)若甲從中隨機選擇一部觀看,則恰好是電影A的概率是;
(2)若甲從中隨機選擇一部觀看,乙也從中隨機選擇一部觀看,求甲、乙兩人選擇同一部電影的概率.

【答案】
(1)
(2)解:畫樹狀圖得:

∵共有16種等可能的結果,甲、乙兩人選擇同一部電影的有4種情況,

∴甲、乙兩人選擇同一部電影的概率為: =


【解析】解:(1)∵有四部不同的電影,恰好是電影A的只有1種情況, ∴恰好是電影A的概率是:
所以答案是: ;
【考點精析】認真審題,首先需要了解列表法與樹狀圖法(當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率),還要掌握概率公式(一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是△ABC內一點,⊙O與BC相交于F、G兩點,且與AB、AC分別相切于點D、E,DE∥BC,連接DF、EG.

(1)求證:AB=AC.
(2)已知AB=10,BC=12,求四邊形DFGE是矩形時⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經過△ABC的三個頂點,與y軸相交于(0, ),點A坐標為(﹣1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.

(1)求該拋物線的函數(shù)關系表達式.
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011年徐州市全年實現(xiàn)地區(qū)生產總值3551.65億元,按可比價格計算,比上年增長13.5%,經濟平穩(wěn)較快增長.其中,第一產業(yè)、第二產業(yè)、第三產業(yè)增加值與增長率情況如圖所示:
根據(jù)圖中信息,寫成下列填空:
(1)第三產業(yè)的增加值為億元:
(2)第三產業(yè)的增長率是第一產業(yè)增長率的倍(精確到0.1);
(3)三個產業(yè)中第產業(yè)的增長最快.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠豆在相同條件下的發(fā)芽試驗,結果如下表所示:

每批粒數(shù)n

100

300

400

600

1000

2000

3000

發(fā)芽的粒數(shù)m

96

282

382

570

948

1912

2850

發(fā)芽的頻率

0.960

0.940

0.955

0.950

0.948

0.956

0.950

則綠豆發(fā)芽的概率估計值是 (
A.0.96
B.0.95
C.0.94
D.0.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以M(﹣5,0)為圓心、4為半徑的圓與x軸交于A、B兩點,P是⊙M上異于A、B的一動點,直線PA、PB分別交y軸于C、D,以CD為直徑的⊙N與x軸交于E、F,則EF的長(
A.等于4
B.等于4
C.等于6
D.隨P點位置的變化而變化

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用2小時,若船速為26千米/時,水速為3千米/時,求A港和B港相距多少千米.設A港和B港相距x千米.根據(jù)題意,可列出的方程是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘核潛艇在海面DF下600米A點處測得俯角為30°正前方的海底C點處有黑匣子,繼續(xù)在同一深度直線航行1464米到B點處測得正前方C點處的俯角為45°.求海底C點處距離海面DF的深度(結果精確到個位,參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別切于點A、B,已知∠CO2D=60°,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24cm,設⊙O1的半徑為xcm.
(1)用含x的代數(shù)式表示扇形O2CD的半徑;
(2)若⊙O1和扇形O2CD兩個區(qū)域的制作成本分別為0.45元/cm2和0.06元/cm2 , 當⊙O1的半徑為多少時,該玩具的制作成本最小?

查看答案和解析>>

同步練習冊答案