設(shè)A,B,C三點(diǎn)的坐標(biāo)分別是(-3,-1),(2,3),(1,3),則∠ACB=________.

135°
分析:先建立直角坐標(biāo)系,找出A,B,C三點(diǎn)的位置,然后利用等腰直角三角形的性質(zhì)求解即可.
解答:解:建立直角坐標(biāo)系如下所示:
過(guò)點(diǎn)A作AD⊥BC交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,
則AD=1+3=4,CD=1+3=4,
∴∠DCA=∠DAC=45°,
∴∠ACB=180°-∠DCA=180°-45°=135°.
故答案為:135°.
點(diǎn)評(píng):本題考查坐標(biāo)與圖形性質(zhì)的知識(shí),難度適中,解題關(guān)鍵是建立直角坐標(biāo)系準(zhǔn)確找出A、B和C三點(diǎn)的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫(huà)出這條拋物線(xiàn);
(2)若點(diǎn)(x0,y0)在拋物線(xiàn)上,且1≤x0≤4,寫(xiě)出y0的取值范圍;
(3)設(shè)平行于y軸的直線(xiàn)x=t交線(xiàn)段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

如圖,在直角坐標(biāo)系中,O是原點(diǎn),AB、C三點(diǎn)的坐標(biāo)分別為A18,0),B18,6),C8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別坐勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。

求出直線(xiàn)OC的解析式及經(jīng)過(guò)O、A、C三點(diǎn)的拋物線(xiàn)的解析式。

試在⑴中的拋物線(xiàn)上找一點(diǎn)D,使得以O、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo)。

設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒。如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫(xiě)出點(diǎn)Q的坐標(biāo),并寫(xiě)出此時(shí)t的取值范圍。

設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒。當(dāng)PQ兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線(xiàn)PQ能否把梯形的面積也分成相等的兩部分,如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇地區(qū)數(shù)學(xué)中考動(dòng)態(tài)型試題-新人教 題型:044

如下圖,在直角坐標(biāo)系中,O是原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別坐勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).

(1)求出直線(xiàn)OC的解析式及經(jīng)過(guò)O、A、C三點(diǎn)的拋物線(xiàn)的解析式.

(2)試在(1)中的拋物線(xiàn)上找一點(diǎn)D,使得以O(shè)、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫(xiě)出點(diǎn)Q的坐標(biāo),并寫(xiě)出此時(shí)t的取值范圍.

(4)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線(xiàn)PQ能否把梯形的面積也分成相等的兩部分,如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年江蘇省蘇州市相城區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫(huà)出這條拋物線(xiàn);
(2)若點(diǎn)(x,y)在拋物線(xiàn)上,且1≤x≤4,寫(xiě)出y的取值范圍;
(3)設(shè)平行于y軸的直線(xiàn)x=t交線(xiàn)段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案