如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上, C、D兩點不重合,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是(    )


A.                  B.                  C.                  D.
A.

試題分析:解:當(dāng)0<x≤1時,y=x2,
當(dāng)1<x≤2時,ED交AB于M,EF交AB于N,
CD=x,則AD=2﹣x,
∵Rt△ABC中,AC=BC=2,
∴△ADM為等腰直角三角形,
∴DM=2﹣x,
∴EM=x﹣(2﹣x)=2x﹣2,
∴SENM= (2x﹣2)2=2(x﹣1)2,
∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,
∴y= ,
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)m=       時,函數(shù)圖像與x軸只有一個交點;
(2)m為何值時,函數(shù)圖像與x軸沒有交點;
(3)若函數(shù)圖像與x軸交于A、B兩點,與y軸交于點C,且△ABC的面積為4,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)

(1)求拋物線頂點M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點,與y軸交于C點,求A,B,C的坐標(biāo)(點A在點B的左側(cè)),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

對于每個非零自然數(shù),軸上有兩點,以表示這兩點間的距離,其中,的橫坐標(biāo)分別是方程組的解,則的值等于           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線).
(1)求拋物線與軸的交點坐標(biāo);
(2)若拋物線與軸的兩個交點之間的距離為2,求的值;
(3)若一次函數(shù)的圖象與拋物線始終只有一個公共點,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成的形式;
(2)求出該二次函數(shù)圖象的對稱軸和頂點坐標(biāo);
(3)當(dāng)x取何值時,y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).

(1)求△ABC中邊BC上高AD;
(2)當(dāng)x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當(dāng)PQ在△ABC外部時(如圖2),求y關(guān)于x的函數(shù)關(guān)系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,點A是拋物線與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的等邊三角形ABC的周長為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某果園有100棵橘子樹,平均每一棵樹結(jié)600個橘子.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橘子.設(shè)果園增種x棵橘子樹,果園橘子總個數(shù)為y個,則果園里增種      棵橘子樹,橘子總個數(shù)最多.

查看答案和解析>>

同步練習(xí)冊答案