【題目】央視“經(jīng)典詠流傳”開播以來受到社會(huì)廣泛關(guān)注,我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”
(1)被調(diào)查的總?cè)藬?shù)是________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中D類有______人;
(4)在抽取的A類5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
【答案】(1)50;216°;(2)見解析;(3)180;(4)
【解析】
(1)由A的人數(shù)除以所占百分比得出被調(diào)查的總?cè)藬?shù),由360乘以C所占比例即可求得C部分所對(duì)應(yīng)的扇形圓心角的度數(shù);
(2)求出B部分的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;
(3)由該校總?cè)藬?shù)乘以D類所占比例即可得出答案;
(4)由列表法和概率公式即可解答.
(1)5÷10%=50(人),
360×=216,
故答案為:50;216°;
(2)如圖所示,總?cè)藬?shù)為50人,所以B的人數(shù)=50-5-30-5=10(人),補(bǔ)全條形統(tǒng)計(jì)圖如圖:
(3)1800 ×=180 (人),
故答案為:180;
(4)設(shè)3個(gè)女生分別為女1,女2,女3,2個(gè)男生分別為男1,男2,所有可能出現(xiàn)的結(jié)果如下表:
從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,所有可能的結(jié)果有20種,每種結(jié)果的可能性都相同,其中,抽到性別相同的結(jié)果有8種,
所以P(被抽到的兩個(gè)學(xué)生性別相同)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察以下等式:
第1個(gè)等式:23-22=13+2×1+1;
第2個(gè)等式:33-32=23+3×2+22;
第3個(gè)等式:43-42=33+4×3+32;
……
按照以上規(guī)律,解決下列問題:
(1)寫出第4個(gè)等式:__________________;
(2)寫出你猜想的第n個(gè)等式(用含n的等式表示),并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC邊上的高線長.
(2)點(diǎn)E為線段AB的中點(diǎn),點(diǎn)F在邊AC上,連結(jié)EF,沿EF將△AEF折疊得到△PEF.
①如圖2,當(dāng)點(diǎn)P落在BC上時(shí),求∠AEP的度數(shù).
②如圖3,連結(jié)AP,當(dāng)PF⊥AC時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為6的菱形,且∠BAD=120°,點(diǎn)E,F分別在AB、BC邊上,將菱形沿EF折疊,點(diǎn)B正好落在AD邊的點(diǎn)G處,若EG⊥AC,則FG的長為( 。
A.3B.6C.3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過點(diǎn)A,D的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OF交AD于點(diǎn)G.
(1)求證:BC是⊙O的切線;
(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;
(3)若BE=8,sinB=,求DG的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于軸對(duì)稱,點(diǎn)P是軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(,0),過點(diǎn)P做軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得△BOD∽△QBM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在軸上運(yùn)動(dòng)時(shí),試求為何值時(shí),以D,M,Q,F為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點(diǎn),拋物線經(jīng)過點(diǎn),對(duì)稱軸為直線,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn).過點(diǎn)作直線軸,交軸于點(diǎn).
(Ⅰ)求該拋物線的解析式及對(duì)稱軸;
(Ⅱ)點(diǎn)在軸上,當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);
(Ⅲ)拋物線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D為AB邊上的動(dòng)點(diǎn),過點(diǎn)D作DE⊥AB交邊AC于點(diǎn)E,過點(diǎn)E作EF⊥DE交BC于點(diǎn)F,連接DF.
(1)當(dāng)AD=4時(shí),求EF的長度;
(2)求△DEF的面積的最大值;
(3)設(shè)O為DF的中點(diǎn),隨著點(diǎn)D的運(yùn)動(dòng),則點(diǎn)O的運(yùn)動(dòng)路徑的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的圓心為點(diǎn),拋物線y=ax2﹣x+c過點(diǎn)A,與交于B、C兩點(diǎn),連接AB、AC,且AB⊥AC,B、C兩點(diǎn)的縱坐標(biāo)分別是2、1.
(1)求B、C點(diǎn)坐標(biāo)和拋物線的解析式;
(2)直線y=kx+1經(jīng)過點(diǎn)B,與x軸交于點(diǎn)D.點(diǎn)E(與點(diǎn)D不重合)在該直線上,且AD=AE,請(qǐng)判斷點(diǎn)E是否在此拋物線上,并說明理由;
(3)如果直線y=k1x﹣1與⊙A相切,請(qǐng)直接寫出滿足此條件的直線解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com