解:(1)當x=0時,折痕EF=AB=3,當點E與點A重合時,折痕EF=
=
.
(2)1≤x≤3.
當x=2時,如圖,連接PE、PF.
∵EF為折痕,
∴DE=PE,
令PE為m,則AE=2-m,DE=m,
在Rt△ADE中,AD
2+AE
2=DE
2∴1+(2-m)
2=m
2,解得m=
;
此時菱形邊長為
.
(3)如圖2,過E作EH⊥BC;
∵△EFH∽△DPA,
∴
,
∴FH=3x;
∴y=EF
2=EH
2+FH
2=9+9x
2;
當F與點C重合時,如圖3,連接PF;
∵PF=DF=3,
∴PB=
,
∴0≤x≤3-2
;
∵函數y=9+9x
2的值在y軸的右側隨x的增大而增大,
∴當x=3-2
時,y有最大值,
此時∠EPF=90°,△EAP∽△PBF.
綜上所述,當y取最大值時△EAP∽△PBF,x=3-2
.
分析:(1)當x=0時,點A與點P重合,則折痕EF的長等于矩形ABCD中的AB,當點E與點A重合時,折痕是一個直角的角平分線,可求EF=
;
(2)由題意可知,EF垂直平分線段DP,要想使四邊形EPFD為菱形,則EF也應被DP平分,所以點E必須要在線段AB上,點F必須在線段DC上,即可確定x的取值范圍.再利用勾股定理確定菱形的邊長.
(3)構造直角三角形,利用相似三角形的對應線段成比例確定y的值,再利用二次函數的增減性確定y的最大值.
點評:此題是一道綜合性較強的題目,主要考查學生的圖感,利用折疊過程中的等量關系尋找解題途徑;特別是最后一問中涉及到的知識點比較多,需要同學們利用相似三角形的性質確定函數關系式后再根據自變量的取值范圍來確定二次函數的最值問題.