如圖,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的長.
分析:首先連接AD,由DE垂直平分AC,根據(jù)線段垂直平分線的性質(zhì),易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,繼而可得∠BAD=90°,然后利用含30°角的直角三角形的性質(zhì),即可求得BC的長.
解答:解:連接AD,
∵DE垂直平分AC,
∴AD=CD,∠DEC=90°,
∴∠DAC=∠C,
∵在△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=
180°-∠BAC
2
=30°,
∴∠DAC=∠C=∠B=30°,
∴∠ADB=∠DAC+∠C=60°,
∴∠BAD=180°-∠B-∠ADB=90°,
在Rt△CDE中,∠C=30°,DE=2cm,
∴CD=2DE=4cm,
∴AD=CD=4cm,
在Rt△BAD中,∠B=30°,
∴BD=2AD=8cm,
∴BC=BD+CD=12(cm).
點評:此題考查了線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案