利用圖象解一元二次方程x2+x-3=0時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫(huà)出拋物線y=x2和直線y=-x+3,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.
(1)填空:利用圖象解一元二次方程x2+x-3=0,也可以這樣求解:在平面直角坐標(biāo)系中畫(huà)出拋物線y=______和直線y=-x,其交點(diǎn)的橫坐標(biāo)就是該方程的解.
(2)已知函數(shù)y=-的圖象(如圖所示),利用圖象求方程-x+3=0的近似解.(結(jié)果保留兩個(gè)有效數(shù)字)

【答案】分析:(1)一元二次方程x2+x-3=0可以轉(zhuǎn)化為x2-3=-x,所以一元二次方程x2+x-3=0的解可以看成拋物線y=x2-3與直線交點(diǎn)的橫坐標(biāo);
(2)函數(shù)y=-的圖象與直線y=-x+3的交點(diǎn)的橫坐標(biāo)就是方程-x+3=0的近似解.
解答:解:(1)x2-3;
(2)圖象如圖所示:

由圖象可得,方程-x+3=0的近似解為:x1=-1.4,x2=4.4.
點(diǎn)評(píng):對(duì)于含有一個(gè)未知數(shù)的方程,我們可以借助學(xué)過(guò)的幾種類(lèi)型的函數(shù)的圖象的交點(diǎn)近似地求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用圖象解一元二次方程x2+x-3=0時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫(huà)出拋物線y=x2和直線y=-x+3,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.
(1)填空:利用圖象解一元二次方程x2+x-3=0,也可以這樣求解:在平面直角坐標(biāo)系中畫(huà)出拋物線y=
 
和直線y=-x,其交點(diǎn)的橫坐標(biāo)就是該方程的解.
(2)已知函數(shù)y=-
6
x
的圖象(如圖所示),利用圖象求方程
6
x
-x+3=0的近精英家教網(wǎng)似解.(結(jié)果保留兩個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、利用圖象解一元二次方程x2-2x-1=0時(shí),我們采用的一種方法是:在直角坐標(biāo)系中畫(huà)出拋物線y=x2和直線y=2x+1,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.
(1)請(qǐng)?jiān)俳o出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖):求方程x3-x-2=0的解.(結(jié)果保留2個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用圖象解一元二次方程x2+x-3=0時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫(huà)出拋物線y=x2+x-3圖象,圖象與x軸交點(diǎn)的橫坐標(biāo)就是該方程的解.也可以這樣求解:在平面直角坐標(biāo)系中畫(huà)出y=x2和直線u=-x+3,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.根據(jù)以上提示完成以下問(wèn)題:

(1)在圖(1)中畫(huà)出函數(shù)y=x2-2x-3的圖象,利用圖象求方程x2-2x-3=0的解.
(2)已知函數(shù)y=-
6x
的圖象(如圖2所示),利用該圖象求方程-x2-x+6=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用圖象解一元二次方程時(shí),我們采用的一種方法是:在平面直角坐標(biāo)系中畫(huà)出拋物線和直線,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解。

(1)填空:利用圖象解一元二次方程,也可以這樣求解:在平面直角坐標(biāo)系中畫(huà)出拋物線     和直線,其交點(diǎn)的橫坐標(biāo)就是該方程的解。(4分)

(2)已知函數(shù)的圖象(如圖所示),利用圖象求方程 的近似解(結(jié)果保留兩個(gè)有效數(shù)字)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案