【題目】已知點M(2x﹣4,x2+2)在y軸上,則點M的坐標(biāo)為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線上各有n個點,用這n對點按如下的規(guī)則連接線段;
①平行線之間的點在連線段時,可以有共同的端點,但不能有其它交點;
②符合①要求的線段必須全部畫出;
圖1展示了當(dāng)n=1時的情況,此時圖中三角形的個數(shù)為0;
圖2展示了當(dāng)n=2時的一種情況,此時圖中三角形的個數(shù)為2;
(1)當(dāng)n=3時,請在圖3中畫出使三角形個數(shù)最少的圖形,此時圖中三角形的個數(shù)為__________個;
(2)試猜想當(dāng)n對點時,按上述規(guī)則畫出的圖形中,最少有多少個三角形?
(3)當(dāng)n=2006時,按上述規(guī)則畫出的圖形中,最少有多少個三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),其中自變量x與函數(shù)值y之間滿足下面的對應(yīng)關(guān)系:
x | … | 3 | 5 | 7 | … |
y | … | 2.5 | 2.5 | ﹣1.5 | … |
則a+b+c=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x=﹣2,則x0、x﹣1、x﹣2之間的大小關(guān)系是( )
A.x0>x﹣2>x﹣1
B.x﹣2>x﹣1>x0
C.x0>x﹣1>x﹣2
D.x﹣1>x﹣2>x0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( )
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com