如圖,在直角坐標(biāo)系中,O是原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別做勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求出直線OC的解析式及經(jīng)過O、A、C三點(diǎn)的拋物線的解析式.
(2)試在(1)中的拋物線上找一點(diǎn)D,使得以O(shè)、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫出點(diǎn)Q的坐標(biāo),并寫出此時(shí)t的取值范圍.
(4)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說明理由.
精英家教網(wǎng)
分析:(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式及經(jīng)過O、A、C三點(diǎn)的拋物線的解析式.
(2)點(diǎn)D就是拋物線與CB的另一個(gè)交點(diǎn).在拋物線的解析式中令y=6,就可以求出D的坐標(biāo).
(3)本題應(yīng)分Q在OC上,和在CB上兩種情況進(jìn)行討論.即0≤t≤5和5<t≤10兩種情況.
(4)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和可以用t表示出來,梯形OABC的周長(zhǎng)就可以求得.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,就可以得到一個(gè)關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進(jìn)行檢驗(yàn).
解答:精英家教網(wǎng)解:(1)∵O、C兩點(diǎn)的坐標(biāo)分別為O(0,0),C(8,6),
設(shè)OC的解析式為y=kx+b,將兩點(diǎn)坐標(biāo)代入得:k=
3
4
,b=0,
∴y=
3
4
x(2分)
∵A,O是x軸上兩點(diǎn),
∴可設(shè)拋物線的解析式為y=a(x-0)(x-18)
再將C(8,6)代入得:a=-
3
40

∴y=-
3
40
x2+
27
20
x.(5分)

(2)D(10,6).

(3)當(dāng)Q在OC上運(yùn)動(dòng)時(shí),可設(shè)Q(m,
3
4
m),
依題意有:m2+(
3
4
m)2=(2t)2
∴m=
8
5
t,
∴Q(
8
5
t,
6
5
t),(0≤t≤5)
當(dāng)Q在CB上時(shí),Q點(diǎn)所走過的路程為2t,
∵OC=10,
∴CQ=2t-10,
∴Q點(diǎn)的橫坐標(biāo)為2t-10+8=2t-2,
∴Q(2t-2,6),(5<t≤10).(11分)

(4)∵梯形OABC的周長(zhǎng)為:10+18+10+6=44,當(dāng)Q點(diǎn)OC上時(shí),P運(yùn)動(dòng)的路程為t,則Q運(yùn)動(dòng)的路程為(22-t),
△OPQ中,OP邊上的高為:(22-t)×
3
5
,S△OPQ=
1
2
t(22-t)×
3
5
,
梯形OABC的面積S=
1
2
(18+10)×6=84,
∵直線PQ把梯形的面積也分成相等的兩部分,即S△OPQ=
1
2
S,
依題意有:
1
2
t(22-t)×
3
5
=84×
1
2
,
整理得:t2-22t+140=0
∵△=222-4×140<0,
∴這樣的t不存在,
當(dāng)Q在BC上時(shí),Q走過的路程為22-t,
∴CQ的長(zhǎng)為:22-t-10=12-t,
∴梯形OCQP的面積=
1
2
×6×(22-t-10+t)=36≠84×
1
2
,
∴這樣的t值不存在.
綜上所述,不存在這樣的t值,使得P,Q兩點(diǎn)同時(shí)平分梯形的周長(zhǎng)和面積.(16分)
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,本題是函數(shù)與梯形的性質(zhì)相結(jié)合的綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案