【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,則其中結(jié)論正確的個數(shù)是( 。
A、2個B、3個
C、4個D、5個
【答案】B
【解析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結(jié)論進行判斷.
解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關(guān)于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點E,交AC于點F.若D為BC邊的中點,M為線段EF上一個動點,則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(1,1)、B(3,5),要在坐標軸上找一點,使得△PAB的周長最小,則點的坐標為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的三個頂點在邊長為1的正方形網(wǎng)格中,已知,,.
(1)畫出關(guān)于軸對稱的(其中,,分別是,,的對應(yīng)點,不寫畫法);
(2)分別寫出,,三點的坐標.
(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):
垂美四邊形的兩組對邊的平方和相等.
已知:如圖1,四邊形ABCD是垂美四邊形,對角線AC、BD相交于點E.
求證:AD2+BC2=AB2+CD2
證明:∵四邊形ABCD是垂美四邊形
∴AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2.
拓展探究:
(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;
問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市初三學生的體育測試成績和課外體育鍛煉時間的情況,現(xiàn)從全市初三學生體育測試成績中隨機抽取200名學生的體育測試成績作為樣本.體育成績分為四個等次:優(yōu)秀、良好、及格、不及格.
體育鍛煉時間 | 人數(shù) |
4≤x≤6 |
|
2≤x<4 | 43 |
0≤x<2 | 15 |
(1)試求樣本扇形圖中體育成績“良好”所對扇形圓心角的度數(shù);
(2)統(tǒng)計樣本中體育成績“優(yōu)秀”和“良好”學生課外體育鍛煉時間表(如圖表所示),請將圖表填寫完整(記學生課外體育鍛煉時間為x小時);
(3)全市初三學生中有14400人的體育測試成績?yōu)椤皟?yōu)秀”和“良好”,請估計這些學生中課外體育鍛煉時間不少于4小時的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com