如圖,拋物線交x軸的正半軸于點A,交y軸于點B,且OA=OB.

(1)求該拋物線的解析式;
(2)若點M為AB的中點,∠PMQ在AB的同側(cè)以 點M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D. 設(shè)AD=m(m>0),BC=n,求n與m之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當∠PMQ的一邊恰好經(jīng)過該拋物線與x軸的另一個交點時,求∠PMQ的另一邊所在直線的解析式.
(1);(2);(3)

試題分析:(1)由拋物線得B(0,-4),再結(jié)合OA=OB,且點A在x軸正半軸上,即可求得點A的坐標,從而求得結(jié)果;
(2)先根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠OBA=45°,AB=,即得∠ADM+∠AMD=135°,由∠CMD=45°可得∠AMD+∠BMC=135°,證得△ADM∽△BMC,根據(jù)相似三角形的性質(zhì)可得,再根據(jù)M為AB的中點可得AM=BM=,即可求得所求的函數(shù)關(guān)系式;
(3)由即可求得拋物線與x軸另一個交點為,由點A、B的坐標可求得AB中點M的坐標,再分①當MP經(jīng)過點(-2,0)時,②當MQ經(jīng)過點(-2,0)時,這兩種情況求解即可.
(1)由拋物線得B(0,-4),
∵OA=OB,且點A在x軸正半軸上,
∴A(4,0)
將A(4,0)代入
,解得
∴拋物線的解析式為;
(2)∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,AB=,
∴∠ADM+∠AMD=135°
∵∠CMD=45°
∴∠AMD+∠BMC=135°,
∴∠ADM=∠BMC, 
∴△ADM∽△BMC,
,則,
∵M為AB的中點,
∴AM=BM=,
就是所求的函數(shù)關(guān)系式;
(3)由
∴拋物線與x軸另一個交點為(-2,0),
∵A(4,0),B(0,-4),
∴AB中點M的坐標為(2,-2)
①當MP經(jīng)過點(-2,0)時,MP的解析式為
∵MP交y軸于點C,
∴C(0,-1),則n=BC=OB-OC=3
,得
∴OD=OA-AD=,則D(,0)
∵MQ經(jīng)過M(2,-2)、D(,0),
∴MQ的解析式為;
②當MQ經(jīng)過點(-2,0)時,MQ的解析式為
此時,點D的坐標為(-2,0),m=AD=6
,即BC=
∴OC=OB-BC=,則C(0,-
∵MP經(jīng)過M(2,-2)、C(0,-),
∴MP的解析式為.
點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,已知直線與x軸、y軸分別交于A、C兩點,拋物線經(jīng)過A、C兩點,點B是拋物線與x軸的另一個交點,當時,y取最大值.

(1)求拋物線和直線的解析式;
(2)設(shè)點P是直線AC上一點,且,求點P的坐標;
(3)若直線與(1)中所求的拋物線交于M、N兩點,問:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,請說明理由;
②猜想當∠MON>900時,a的取值范圍(不寫過程,直接寫結(jié)論).
(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M,N兩點間的距離為

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖像的頂點為C,與x軸交于A、B兩點,與y軸交于點D。
①當△ABC的面積等于1時,求a的值:
②當△ABC的面積與△ABD的面積相等時,求m的值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)中,其函數(shù)與自變量之間的部分對應(yīng)值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)當x=-1時,y的值為      ;
(2)點A(,)、B(,)在該函數(shù)的圖象上,則當時,的大小關(guān)系是      ;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式:      
(4)設(shè)點P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函數(shù)的圖象上,問:當m<-3時,y1、y2、y3的值一定能作為同一個三角形三邊的長嗎?為什么?=】

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為50米的籬笆圍成。已知墻長為26米(如圖所示),設(shè)這個苗圃園平行于墻的一邊的長為米。(1)若垂直于墻的一邊長為米,直接寫出的函數(shù)關(guān)系式及其自變量的取值范圍;(2)當為多少米時,這個苗圃園的面積最大,并求出這個最大值;(3)當這個苗圃園的面積不小于300平方米時,試結(jié)合函數(shù)圖象,求出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=x2﹣4x+5的最小值是
A.﹣1B.1C.3D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖像如圖所示,反比例函數(shù)y=與正比例函數(shù)y=(b+c)x在同一坐標系中的大致圖像可能是(    )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

黃岡市某高新企業(yè)制定工齡工資標準時充分考慮員工對企業(yè)發(fā)展的貢獻,同時提高員工的積極性、控制員工的流動率,對具有中職以上學歷員工制定如下的工齡工資方案。
Ⅰ.工齡工資分為社會工齡工資和企業(yè)工齡工資;
Ⅱ.社會工齡=參加本企業(yè)工作時年齡-18,
企業(yè)工齡=現(xiàn)年年齡-參加本企業(yè)工作時年齡。
Ⅲ.當年工作時間計入當年工齡
Ⅳ.社會工齡工資y1(元/月)與社會工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直在深圳實行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

同步練習冊答案