【題目】如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 mA處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時,求yx的關(guān)系式(不要求寫出自變量x的取值范圍)

(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

【答案】(1)y=-(x-6)2+2.6;(2)球能過網(wǎng);球會出界.

【解析】

解:(1)∵h(yuǎn)2.6,球從O點(diǎn)正上方2 mA處發(fā)出,

∴ya(x6)2h(02)點(diǎn),

∴2a(06)22.6,解得:a=-,

所以yx的關(guān)系式為:y=-(x6)22.6.

(2)當(dāng)x9時,y=-(x6)22.62.45>2.43,所以球能過網(wǎng);

當(dāng)y0時,-(x6)22.60,

解得:x162>18,x262(舍去),

所以會出界.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過點(diǎn)(0,1),將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點(diǎn)Dy軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.

(1)求拋物線C1的解析式;

(2)如圖2,連結(jié)AP,過點(diǎn)BBC⊥APAP的延長線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動點(diǎn),連結(jié)BQ并延長交AC于點(diǎn)F,

當(dāng)點(diǎn)Q運(yùn)動到什么位置時,SPBD×SBCF=8?

連接PQ并延長交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的表達(dá)式是y=ax2+(1﹣a)x+1﹣2a(a為不等于0的常數(shù)),上述拋物線無論a為何值始終經(jīng)過定點(diǎn)A和定點(diǎn)B;A為x軸上的點(diǎn),B為第一象限內(nèi)的點(diǎn).

(1)請寫出A,B兩點(diǎn)的坐標(biāo):A(   ,0);B(   ,   );

(2)如圖1,當(dāng)拋物線與x軸只有一個公共點(diǎn)時,求a的值;

(3)如圖2,當(dāng)a<0時,若上述拋物線頂點(diǎn)是D,與x軸的另一交點(diǎn)為點(diǎn)C,且點(diǎn)A,B,C,D中沒有兩個點(diǎn)相互重合.

求:①△ABC能否是直角三角形,為什么?

②若使得△ABD是直角三角形,請你求出a的值.(求出1個a的值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,二次函數(shù)y=ax2+bx+a2+b(a≠0)的圖象為下列圖象之一,則a的值為( )

A. -1 B. 1 C. -3 D. -4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國西南五省市的部分地區(qū)發(fā)生嚴(yán)重旱災(zāi),為鼓勵節(jié)約用水,某市自來水公司采取分段收費(fèi)標(biāo)準(zhǔn),右圖反映的是每月收取水費(fèi)y與用水量x之間的函數(shù)關(guān)系

1)小明家五月份用水8,應(yīng)交水費(fèi)______ ;

2)按上述分段收費(fèi)標(biāo)準(zhǔn),小明家三、四月份分別交水費(fèi)26元和18,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段能組成鈍角三角形的是( )

A. 3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,下列結(jié)論:①;②平分;③;④;其中正確的有( )個

A.2B.3C.4D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點(diǎn)P繞點(diǎn)T(0,t)(t>0)旋轉(zhuǎn)180°得到點(diǎn)Q,那么稱線段QP為“拓展帶”,點(diǎn)Q為點(diǎn)P的“拓展點(diǎn)”.

(1)當(dāng)t=3時點(diǎn)(0,0)的“拓展點(diǎn)坐標(biāo)為 ,點(diǎn)(﹣1,1)拓展點(diǎn)”坐標(biāo)為 ;

(2)如果 t>1,當(dāng)點(diǎn)M(2,1)的“拓展點(diǎn)”N在函數(shù)y=﹣的圖象上時,求t的值;

(3)當(dāng)t=1時,點(diǎn)Q為點(diǎn)P(2,0)的“拓展點(diǎn)”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”PQ有交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,、所對的邊分別為、、

(1) ,則________________________;

(2) ,,則_______________________;

(3) ,,則_______________________;

(4) ,,則_______________________;

查看答案和解析>>

同步練習(xí)冊答案