如圖所示,已知BC是⊙O的直徑,A、D是⊙O上的兩點.
(1)若∠ACB=58°,求∠ADC的度數(shù);
(2)當=時,連接CD、AD,其中AD與直徑BC相交于點E,求證:2CD2=CE•BC;
(3)在(2)的條件下,若∠COD=45°,CE=,求的值.

【答案】分析:(1)根據(jù)圓周角定理以及三角形內(nèi)角和定理得出∠ADC的度數(shù);
(2)利用=時,得出∠COD=∠EDC,即可得出△DCE∽△OCD,進而得出2CD2=EC•BC;
(3)根據(jù)(2)中條件得出∠AOC=90°,進而得出半徑OB=x,AF=x-1=AO=x,求出x的值,即可得出的值.
解答:解:(1)如圖1,∵BC是⊙O的直徑,
∴∠BAC=90°,
∵∠ACB=58°,
∴∠B=90°-58°=32°,
∴∠ADC=32°;

(2)如圖2,
=,
∴∠COD=∠EDC,
∵∠OCD=∠DCE,
∴△DCE∽△OCD,
=,
∴CD2=EC•CO,
∴2CD2=EC•BC;

(3)∵∠COD=45°,∠DAC=∠COD,=,
∴AD平分∠OAC,∠AOC=90°,
如圖3,過點E作EF⊥AC,
由題意可得出:∠BCA=45°,
∵EC=,
∴EF=1,
設(shè)半徑OB=x,AF=x-1=AO=x,
解得:x=+1,
∴BC=2(+1)=2+2,
AB=+1),
==
點評:此題主要考查了圓的綜合應用以及圓周角定理和相似三角形的判定與性質(zhì)等知識,根據(jù)已知得出⊙O的半徑是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知BC是半圓O的直徑,△ABC內(nèi)接于⊙O,以A為圓心,AB為半徑作弧交⊙O于F,交BC于G,交OF于H,AD⊥BC于D,AD、BF交于E,CM切⊙O于C,交BF的延長線于M,若FH=6,AE=
53
DE
,求FM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都一模)如圖所示,已知BC是⊙O的直徑,A、D是⊙O上的兩點.
(1)若∠ACB=58°,求∠ADC的度數(shù);
(2)當
CD
=
1
2
AC
時,連接CD、AD,其中AD與直徑BC相交于點E,求證:2CD2=CE•BC;
(3)在(2)的條件下,若∠COD=45°,CE=
2
,求
BC•CE
AB
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,已知BC是半圓O的直徑,△ABC內(nèi)接于⊙O,以A為圓心,AB為半徑作弧交⊙O于F,交BC于G,交OF于H,AD⊥BC于D,AD、BF交于E,CM切⊙O于C,交BF的延長線于M,若FH=6,數(shù)學公式,求FM的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年中考數(shù)學總復習專題:轉(zhuǎn)化思想在代數(shù)中的應用2(解析版) 題型:解答題

如圖所示,已知BC是半圓O的直徑,△ABC內(nèi)接于⊙O,以A為圓心,AB為半徑作弧交⊙O于F,交BC于G,交OF于H,AD⊥BC于D,AD、BF交于E,CM切⊙O于C,交BF的延長線于M,若FH=6,,求FM的長.

查看答案和解析>>

同步練習冊答案