【題目】在中,AB=20cm,BC=16cm,點(diǎn)D為線段AB的中點(diǎn),動點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)在射線BC上運(yùn)動,同時點(diǎn)Q以cm/s(>0且)的速度從C點(diǎn)出發(fā)在線段CA上運(yùn)動,設(shè)運(yùn)動時間為秒。
(1)若AB=AC,P在線段BC上,求當(dāng)為何值時,能夠使和全等?
(2)若,求出發(fā)幾秒后, 為直角三角形?
(3)若,當(dāng)的度數(shù)為多少時, 為等腰三角形?(請直接寫出答案,不必寫出過程)
【答案】(1) ;(2)①2.5;②;(3).
【解析】試題分析:(1)根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×?xí)r間公式,先求得點(diǎn)P運(yùn)動的時間,再求得點(diǎn)Q的運(yùn)動速度;(2)分兩種情況;①當(dāng)∠BPD=90°時,由∠B=60°,得到∠BDP=30°,求得2BP=BD=10,求出x=2.5;②當(dāng)∠BDP=90°時,根據(jù)三角形的內(nèi)角和得到∠BPD=30°,求出x=10;即可得到當(dāng)P出發(fā)2.5秒或10秒后,△BPD為直角三角形;(3)分點(diǎn)P在邊BC上或點(diǎn)P在邊BC的延長線上,△CPQ為等腰三角形,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得到結(jié)論.
試題解析:
①
①當(dāng)PQ=CQ, ,
②當(dāng)
,
③當(dāng),
,
點(diǎn)P在邊BC的延長線上, 為等腰三角形,
,
綜上所述:當(dāng)為等腰三角形時, 的度數(shù)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲和乙一起做游戲,下列游戲規(guī)則對雙方公平的是( )
A.在一個裝有2個紅球和3個白球(每個球除顏色外都相同)的袋中任意摸出一球,摸到紅球甲獲勝,摸到白球乙獲勝;
B.從標(biāo)有號數(shù)1到100的100張卡片中,隨意抽取一張,抽到號數(shù)為奇數(shù)甲獲勝,否則乙獲勝;
C.任意擲一枚質(zhì)地均勻的骰子,擲出的點(diǎn)數(shù)小于4則甲獲勝,擲出的點(diǎn)數(shù)大于4則乙獲勝;
D.讓小球在如圖所示的地板上自由地滾動,并隨機(jī)地停在某塊方塊上,若小球停在黑色區(qū)域則甲獲勝,若停在白色區(qū)域則乙獲勝
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】株洲市城區(qū)參加2018年初中畢業(yè)會考的人數(shù)約為10600人,則數(shù)10600用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.a表示一個正數(shù)
B.a表示一個負(fù)數(shù)
C.a表示一個整數(shù)
D.a可以表示一個負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的多項(xiàng)式(x2+x-n)(mx-3)的展開式中不含x2和常數(shù)項(xiàng),求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學(xué)語言表達(dá): .
(1)在圖②,若, ,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB=, CD=2連接AC、AD、BD、BC,AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結(jié)論;
(2)當(dāng)AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“創(chuàng)文明城,迎省運(yùn)會”合唱比賽中,10位評委給某隊(duì)的評分如下表所示,則下列說法正確的是( )
成績(分) | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 |
人數(shù) | 3 | 2 | 3 | 1 | 1 |
A. 中位數(shù)是9.4分B. 中位數(shù)是9.35分
C. 眾數(shù)是3和1D. 眾數(shù)是9.4分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)表中一次函數(shù)的自變量x與函數(shù)y的對應(yīng)值,可得p的值為( )
x | ﹣2 | 0 | 1 |
y | 3 | p | 0 |
A.1
B.﹣1
C.3
D.﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com