已知拋物線y1圖象的頂點(diǎn)坐標(biāo)是(1,4),y1圖象經(jīng)過(guò)點(diǎn)(0,3),直線y2=2x-1,求:
(1)二次函數(shù)y1的解析式;
(2)拋物線y1和直線y2的交點(diǎn)坐標(biāo);
(3)當(dāng)y1>y2時(shí)x的取值范圍.

解:(1)設(shè)拋物線的解析式為y1=a(x-1)2+4,
把(0,3)代入得a+4=3,解得a=-1,
所以拋物線的解析式為y1=-(x-1)2+4=-x2+2x+3;

(2)解方程組
所以拋物線y1和直線y2的交點(diǎn)坐標(biāo)為(2,3),(-2,-5);

(3)當(dāng)x<-2或x>2時(shí),y1>y2
分析:(1)由于已知頂點(diǎn)坐標(biāo),則可設(shè)頂點(diǎn)式y(tǒng)1=a(x-1)2+4,然后把點(diǎn)(0,3)代入求出a即可;
(2)解由拋物線和直線解析式所組成的方程組即可得到它們的交點(diǎn)坐標(biāo);
(3)由于拋物線開(kāi)口向下,則當(dāng)x<-2或x>2時(shí),一次函數(shù)圖象到在拋物線的上方.
點(diǎn)評(píng):本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來(lái)求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來(lái)求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知拋物線y1=-x2-2x+8的圖象交x軸于點(diǎn)A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C.拋物線y2經(jīng)過(guò)B、C兩點(diǎn)且對(duì)稱軸為直線x=3.
(1)確定A、B、C三點(diǎn)的坐標(biāo);
(2)求拋物線y2的解析式;
(3)若過(guò)點(diǎn)(0,3)且平行于x軸的直線與拋物線y2交于M、N兩點(diǎn),以MN為一邊,拋物線y2上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A,B(點(diǎn)A,B在原點(diǎn)O兩側(cè)),與y軸相交于點(diǎn)C,且點(diǎn)A,C在一次函數(shù)y=3x+n的圖象上,線段AB長(zhǎng)為12,線段OC長(zhǎng)為6,當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•余姚市模擬)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(3,5)、(2,8)、(0,8).
(1)求這個(gè)二次函數(shù)的解析式;
(2)已知拋物線y1=a1x2+b1x+c1(a1≠0),y2=a2x2+b2x+c2(a2≠0),且滿足
a1
a2
=
b1
b2
=
c1
c2
=k(k≠0,1)
,則我們稱拋物線y1與y2互為“友好拋物線”,請(qǐng)寫出當(dāng)k=-
1
2
時(shí)第(1)小題中的拋物線的友好拋物線,并求出這友好拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州)已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A,B(點(diǎn)A,B在原點(diǎn)O兩側(cè)),與y軸相交于點(diǎn)C,且點(diǎn)A,C在一次函數(shù)y2=
43
x+n的圖象上,線段AB長(zhǎng)為16,線段OC長(zhǎng)為8,當(dāng)y1隨著x的增大而減小時(shí),求自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案