精英家教網 > 初中數學 > 題目詳情
如圖,一架飛機以200米/秒的速度由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了半分鐘后到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.
∵飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°
到B處時,往后測得山頭C的俯角為30°
∴∠BAC=60°,∠ABC=30°,∠BAD=30°                        
∴∠ACB=180°-∠ABC-∠BAC=180°-30°-60°=90°                 2分
∵AB=20030=6000米                                      
∴BC=AB•cos30°=6×= 
Rt△ABD中,BD=AB•tan30°=6×=千米             千米                                    
作CE⊥BD于E點,
∵AB⊥BD,∠ABC=30°,∴∠CBE=60°                           1分
則BE=BC•cos60°=,DE=BD-BE=,CE=BC•sin60°=       2分
∴CD=DE2+CE2=千米
∴山頭C、D之間的距離千米.                                 1分解析:
根據題目中的俯角可以求出∠BAC=60°,∠ABC=30°,∠BAD=30°,進而得到∠ACB=90°,利用AB=6千米求得BC的長,然后求得CD兩點間的水平距離,進而求得C、D之間的距離
練習冊系列答案
相關習題

科目:初中數學 來源:湖北省黃石市2012屆九年級5月聯考數學試題 題型:044

如圖,一架飛機以200米/秒的速度由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了半分鐘后到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一架飛機以200米/秒的速度由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了半分鐘后到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.

 

查看答案和解析>>

科目:初中數學 來源:2012屆湖北黃石九年級5月聯考數學試卷(帶解析) 題型:解答題

如圖,一架飛機以200米/秒的速度由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了半分鐘后到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年湖北黃石九年級5月聯考數學試卷(解析版) 題型:解答題

如圖,一架飛機以200米/秒的速度由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了半分鐘后到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.

 

查看答案和解析>>

同步練習冊答案