精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD中,AB5,AD3.點ECD上的動點,以AE為直徑的⊙OAB交于點F,過點FFGBE于點G

1)若ECD的中點時,證明:FG是⊙O的切線

2)試探究:BE能否與⊙O相切?若能,求出此時DE的長;若不能,請說明理由.

【答案】(1)見解析;(2)點E不存在,BE不能與⊙O相切,理由見解析

【解析】

1)要證明FG是⊙O的切線只要證明OFFG即可;
2)先假設BE能與⊙O相切,則AEBE,即∠AEB=90°.設DE的長為x,然后用x表示出CE的長,根據勾股定理可得出一個關于x的一元二次方程,若BE能與⊙O相切,那么方程的解即為DE的長;若方程無解,則說明BE不可能與⊙O相切.

1)連接OFEF;

AE是⊙O的直徑,AFEF,

∵四邊形ABCD是矩形,

∴∠DAB=∠D90°,ABCD,

∴四邊形ADEF是矩形,

AFDE,

ECBF,

ECD的中點,

FAB的中點,

OFBE,

FGBE

OFFG,

FG為⊙O的切線.

2)若BE能與⊙O相切,因AE是⊙O的直徑,則AEBE,∠AEB90°

DEx,則EC5x

由勾股定理得:AE2+EB2AB2,

即(9+x2+[5x2+9]25

整理得x25x+90,

b24ac2536=﹣110,

∴該方程無實數根,

∴點E不存在,BE不能與⊙O相切.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉,使KM邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使MN邊與CD邊重合,完成第二次旋轉……連續(xù)經過六次旋轉.在旋轉的過程中,當正方形和正六邊形的邊重合時,點B,M間的距離可能是( 。

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 先化簡,再求值:

1[x2+y2﹣(x+y2+2xxy]÷4x,其中x2y2

2)(mn+2)(mn2)﹣(mn12,其中m2,n

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙的半徑為5,AB為直徑,C是圓周上一點。

1)求∠ACB的度數。

2)若ACAO,求陰影部分的面積(用含的代數式表示).

3)當C點在圓周上移動時,AC、BC、AB三條線段的長度之間存在著恒定不變的關系,請你寫出一種這樣的關系,并說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為做好漢江防汛工作,防汛指揮部決定對一段長為2500m重點堤段利用沙石和土進行加固加寬.專家提供的方案是:使背水坡的坡度由原來的11變?yōu)?/span>11.5,如圖,若CDBA,CD=4米,鉛直高DE=8米.

1)求加固加寬這一重點堤段需沙石和土方數是多少?

2)某運輸隊承包這項沙石和土的運送工程,根據施工方計劃在一定時間內完成,按計劃工作5天后,增加了設備,工效提高到原來的1.5倍,結果提前了5天完成任務,問按原計劃每天需運送沙石和土多少m3?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數y=(k≠0,x>0)的圖象同時經過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2A品牌和3B品牌的計算器共需156購買3A品牌和1B品牌的計算器共需122

(1)求這兩種品牌計算器的單價;

(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動具體辦法如下A品牌計算器按原價的八折銷售,B品牌計算器超出5個的部分按原價的七折銷售設購買xA品牌的計算器需要y1,購買xx>5)個B品牌的計算器需要y2分別求出y1、y2關于x的函數關系式

(3)當需要購買50個計算器時,買哪種品牌的計算器更合算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA=OB,O的直徑為6 cm,AB=6 cm,則陰影部分的面積為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,AC平分∠BAD,連接BF.

(1)求證:ADED;

(2)若CD=4,AF=2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案