解:(1)證明:分別延長AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以△ABG≌△MBG(ASA).
從而,G是AM的中點(diǎn).同理可證△ACH≌△NCH(ASA),
從而,H是AN的中點(diǎn).所以GH是△AMN的中位線,從而,HG∥MN,即HG∥BC.
(2)解:由(1)知,△ABG≌△MBG及△ACH≌△NCH,
所以AB=BM=9厘米,AC=CN=14厘米.
又BC=18厘米,
所以BN=BC-CN=18-14=4(厘米),
MC=BC-BM=18-9=9(厘米).
從而MN=18-4-9=5(厘米),
∴GH=
MN=
cm.
分析:(1)若延長AG,設(shè)延長線交BC于M.由角平分線的對稱性可以證明△ABG≌△MBG,從而G是AM的中點(diǎn);同樣,延長AH交BC于N,H是AN的中點(diǎn),從而GH就是△AMN的中位線,所以GH∥BC;
(2)利用△ABC的三邊長可求出GH的長度.
點(diǎn)評:說明(1)在本題證明過程中,我們事實(shí)上證明了等腰三角形頂角平分線三線合一(即等腰三角形頂角的平分線也是底邊的中線及垂線)性質(zhì)定理的逆定理:“若三角形一個角的平分線也是該角對邊的垂線,則這條平分線也是對邊的中線,這個三角形是等腰三角形”.
(2)“等腰三角形三線合一定理”的下述逆命題也是正確的:“若三角形一個角的平分線也是該角對邊的中線,則這個三角形是等腰三角形,這條平分線垂直于對邊”.同學(xué)們不妨自己證明.
(3)從本題的證明過程中,我們得到啟發(fā):若將條件“∠B,∠C的平分線”改為“∠B(或∠C)及∠C(或∠B)的外角平分線”(如圖1所示),或改為“∠B,∠C的外角平分線”(如圖2所示),其余條件不變,那么,結(jié)論GH∥BC仍然成立.同學(xué)們也不妨試證.