如圖,在ABCD中,已知∠A+∠C=,求ABCD四個(gè)內(nèi)角的度數(shù).

答案:
解析:

  解:方法一:由于平行四邊形的對(duì)角相等,且∠A+∠C=

  所以:∠A=∠C=

  因?yàn)椋篈D∥BC

  所以:∠B=-∠A=

  所以:∠D=∠B=

  方法二:由于平行四邊形的對(duì)角相等,且∠A+∠C=

  所以:∠A=∠C=

  因?yàn)椋骸螦+∠B+∠C+∠D=

  所以:∠B+∠D=

  所以:∠B=∠D=


提示:

思路與技巧:要解決本題的關(guān)鍵是先根據(jù)“平行四邊形對(duì)角相等”求出∠A、∠C,再根據(jù)“平行四邊形中相鄰兩角互補(bǔ)”求出其余兩角∠B、∠D,這是方法一.方法二的關(guān)鍵是仍先根據(jù)“平行四邊形對(duì)角相等”求出∠A、∠C,接下來(lái)與方法一不同的是根據(jù)四邊形內(nèi)角和是,可得∠B+∠D=,再根據(jù)“平行四邊形對(duì)角相等”求出∠B=∠D=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在?ABCD中,∠A的平分線(xiàn)交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線(xiàn)上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線(xiàn)與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線(xiàn)上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案