三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:
如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1 000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1 800尺=300步.結果用里和步來表示)

【答案】分析:由已知不難得出△DEG∽△HAG,再由相似三角形對應邊成比例即可求解線段的長度.
解答:解:∵AH∥BC,
∴△BCF∽△HAF,
,
又∵DE∥AH,
∴△DEG∽△HAG,

又∵BC=DE,
,
,
∴BH=30750(步),
又∵,
∴AH=,即AH==1255(步).
點評:能夠熟練運用三角形的相似可解決一些簡單的實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:
如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1 000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1 800尺=300步.結果用里和步來表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

從下面兩個題目中任選一題作答:
(A題)折竹抵地
今有竹高一丈,末折抵地,去本三尺.問折者高幾何(如圖)
友情提醒:請寫出解答這首詩的方法和步驟.
(B題)海島算經(jīng)
三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1 000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1 800尺=300步.結果用里和步來表示)
友情提醒:請寫出必要的算法和過程.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

從下面兩個題目中任選一題作答:
(A題)折竹抵地
今有竹高一丈,末折抵地,去本三尺.問折者高幾何(如圖)
友情提醒:請寫出解答這首詩的方法和步驟.
(B題)海島算經(jīng)
三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1 000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1 800尺=300步.結果用里和步來表示)
友情提醒:請寫出必要的算法和過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:
如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1 000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1 800尺=300步.結果用里和步來表示)

查看答案和解析>>

同步練習冊答案