an+1·an-1÷(an)2的值是(    )

   A.1      B.0    C.-1      D.±1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(
9
9
,
9
9
);依此類推第n條拋物線yn的頂點坐標(biāo)為(
n2
n2
,
n2
n2
);所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系式是
y=x
y=x
;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(______,______);依此類推第n條拋物線yn的頂點坐標(biāo)為(______,______);所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系式是______;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(______,______);依此類推第n條拋物線yn的頂點坐標(biāo)為(______,______);所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系式是______;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出AA1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(______,______);依此類推第n條拋物線yn的頂點坐標(biāo)為(______,______);所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系式是______;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出AA1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料:先看數(shù)列1,2,4,8,…,263.從第二項起,每一項與它的前一項的比都等于2,像這樣,一個數(shù)列:a1,a2,a3,…,an-1,an,從它的第二項起,每一項與它的前一項的比都等于一個常數(shù)q(q≠0),那么這個數(shù)列就叫做等比數(shù)列,q叫等比數(shù)列的公比,根據(jù)閱讀材料,回答下列問題:
(1)請你寫出一個等比數(shù)列,并說明公比是什么?
(2)請你判斷下列數(shù)列是否是等比數(shù)列,并說明理由:數(shù)學(xué)公式
(3)有一個等比數(shù)列a1,a2,a3,…,an-1,an,已知a1=5,q=2,請求出它的第25項a25

查看答案和解析>>

同步練習(xí)冊答案