12、頂點(diǎn)為(-2,-5)且過(guò)點(diǎn)(1,-14)的拋物線的解析式為
y=-x2-4x-9
分析:已知拋物線的頂點(diǎn)坐標(biāo),設(shè)頂點(diǎn)式y(tǒng)=a(x+2)2-5,將點(diǎn)(1,-14)代入求a,再化為一般式即可.
解答:解:設(shè)頂點(diǎn)式y(tǒng)=a(x+2)2-5,
將點(diǎn)(1,-14)代入,得a(1+2)2-5=-14,
解得a=-1,
∴y=-(x+2)2-5,即y=-x2-4x-9.
點(diǎn)評(píng):本題考查了待定系數(shù)法求拋物線解析式的一般方法,需要根據(jù)題目條件,合理地選擇解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,拋物線y=x2+bx+c與x軸交于兩點(diǎn)A、B,與y軸交于點(diǎn)C,其中A精英家教網(wǎng)在B的左側(cè),B的坐標(biāo)是(3,0).將直線y=kx沿y軸向上平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)點(diǎn)B、C.
(1)求k的值;
(2)求直線BC和拋物線的解析式;
(3)求△ABC的面積;
(4)設(shè)拋物線頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C在x軸負(fù)半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求該拋物線的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,求四邊形OAPB的面積;
(3)有兩動(dòng)點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度沿折線OAB按O→A→B的路線運(yùn)動(dòng),點(diǎn)N以每秒4個(gè)單位長(zhǎng)度的速度沿折線按O→B→A的路線運(yùn)動(dòng),當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.
①請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②判斷在①的過(guò)程中,t為何值時(shí),△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江二模)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)求拋物線解析式及頂點(diǎn)E的坐標(biāo);
(2)如圖,過(guò)點(diǎn)E作BC平行線,交x軸于點(diǎn)F,在不添加線和字母情況下,圖中面積相等的三角形有:
△BCF與△BCE
△BCF與△BCE
;
(3)將拋物線向下平移,與x軸交于點(diǎn)M、N,與y軸的正半軸交于點(diǎn)P,頂點(diǎn)為Q.在四邊形MNQP中滿足S△NPQ=S△MNP,求此時(shí)直線PN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湛江)如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).
(1)求此拋物線的解析式;
(2)過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸l與⊙C有什么位置關(guān)系,并給出證明;
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=ax+c與拋物線y=ax2+bx+c(a≠0,b≠0)分別相交于A(0,C),B(1-b,m)兩點(diǎn),拋物線y=ax2+bx+c與x軸交于C,D兩點(diǎn),頂點(diǎn)為P.
(1)求a的值.
(2)如果CD=2,當(dāng)-1≤x≤1時(shí),拋物線y=ax2+bx+c的最大值與最小值的差為4,求點(diǎn)的B坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案