(2009•衢州)如圖,將點(diǎn)數(shù)為2,3,4的三張牌按從左到右的方式排列,并且按從左到右的牌面數(shù)字記錄排列結(jié)果為234.
現(xiàn)在做一個抽放牌游戲:從上述左、中、右的三張牌中隨機(jī)抽取一張,然后把它放在其余兩張牌的中間,并且重新記錄排列結(jié)果.例如,若第1次抽取的是左邊的一張,點(diǎn)數(shù)是2,那么第1次抽放后的排列結(jié)果是324;第2次抽取的是中間的一張,點(diǎn)數(shù)仍然是2,則第2次抽放后的排列結(jié)果仍是324.照此游戲規(guī)則,兩次抽放后,這三張牌的排列結(jié)果仍然是234的概率為( )

A.
B.
C.
D.
【答案】分析:列舉出所有情況,讓這三張牌的排列結(jié)果仍然是234的情況數(shù)除以總情況數(shù)即為所求的概率.
解答:解:可抽取3張牌,所以共有3種情況,而只有1種情況排列的結(jié)果是234,所以概率是
故選B.
點(diǎn)評:情況較少可用列舉法求概率,采用列舉法解題的關(guān)鍵是找到所有存在的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•衢州)如圖,已知點(diǎn)A(-4,8)和點(diǎn)B(2,n)在拋物線y=ax2上.
(1)求a的值及點(diǎn)B關(guān)于x軸對稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求出點(diǎn)Q的坐標(biāo);
(2)平移拋物線y=ax2,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C(-2,0)和點(diǎn)D(-4,0)是x軸上的兩個定點(diǎn).
①當(dāng)拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當(dāng)拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點(diǎn)A(-4,8)和點(diǎn)B(2,n)在拋物線y=ax2上.
(1)求a的值及點(diǎn)B關(guān)于x軸對稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求出點(diǎn)Q的坐標(biāo);
(2)平移拋物線y=ax2,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C(-2,0)和點(diǎn)D(-4,0)是x軸上的兩個定點(diǎn).
①當(dāng)拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當(dāng)拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省衢州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點(diǎn)A(-4,8)和點(diǎn)B(2,n)在拋物線y=ax2上.
(1)求a的值及點(diǎn)B關(guān)于x軸對稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求出點(diǎn)Q的坐標(biāo);
(2)平移拋物線y=ax2,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C(-2,0)和點(diǎn)D(-4,0)是x軸上的兩個定點(diǎn).
①當(dāng)拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數(shù)解析式;
②當(dāng)拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.5.3.全等三角形(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點(diǎn)P在矩形上方,點(diǎn)Q在矩形內(nèi).
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點(diǎn)P在矩形上方,點(diǎn)Q在矩形內(nèi).
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

同步練習(xí)冊答案