先化簡(jiǎn),再求值:,其中x是不等式組的整數(shù)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某超市對(duì)進(jìn)貨價(jià)為10元/千克的某種蘋果的銷售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷售量y(千克)與銷售價(jià)x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)應(yīng)怎樣確定銷售價(jià),使該品種蘋果的每天銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如右圖,△ABC中,∠A=90°,點(diǎn)D在AC邊上,DE∥BC,若
∠1=35°,則∠B的度數(shù)為 ( )
A.25° B.35° C.55° D.65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如右圖,點(diǎn)B在x軸上,∠ABO=90°,∠A= 30°,OA=4,將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)120°得到△OA'B’,則點(diǎn)A’ 的坐標(biāo)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某商場(chǎng)新近一批A、B兩種型號(hào)的節(jié)能防近視臺(tái)燈,每臺(tái)進(jìn)價(jià)分別為200元、170元,近兩周的銷售情況如下:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)
(1)求A、B兩種型號(hào)的臺(tái)燈的銷售單價(jià);
(2)若該商場(chǎng)準(zhǔn)備用不多于5400元的金額再購(gòu)進(jìn)這兩種型號(hào)的臺(tái)燈共30臺(tái),求A種型號(hào)的臺(tái)燈最多能購(gòu)進(jìn)多少臺(tái)?
(3)在(2)的條件下,該商場(chǎng)銷售完這30臺(tái)臺(tái)燈能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo),若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如右圖是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來(lái)往輛的車速(單位:千米/時(shí))情況,則這些車的車速的眾數(shù)、中位數(shù)分別是
A. 8,6 B.8,5
C. 52,53 D.52,52
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
)閱讀材料:如圖1,在△AOB中,∠O=90°,OA=OB,點(diǎn)P在AB邊上,PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F,則PE+PF=OA.(此結(jié)論不必證明,可直接應(yīng)用)
圖1 圖2 圖3 圖4
(1)理解與應(yīng)用
如圖2,正方形ABCD的邊長(zhǎng)為2,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)P在AB邊上,PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F,則 PE+PF的值為_____________.
(2)類此與推理
如圖3,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.AB=4,AD=3,點(diǎn)P在AB邊上,PE
∥OB交AC于點(diǎn)E,PF∥OA交BD于點(diǎn)F,則PE+PF的值為______________.
(3)拓展與延伸
如圖4,⊙○的半徑為4,A,B,C,D是⊙○上的四點(diǎn),過(guò)點(diǎn)C,D的切線CH,DG相交于點(diǎn)M,點(diǎn)P在弦AB上,PE∥BC交AC于點(diǎn)E,PF∥AD交BD于點(diǎn)F,當(dāng)∠ADG=∠BCH=30°時(shí),PE+PF是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,利用標(biāo)桿BE測(cè)量建筑物的高度,標(biāo)桿BE高1.5米,測(cè)得AB=2米,BC=14米,則樓高CD為 米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com