如圖,已知E是矩形ABCD的邊CD上一點,BF⊥AE于F,試說明:△ABF∽△EAD.

【答案】分析:根據(jù)兩角對應相等的兩個三角形相似可解.
解答:證明:∵矩形ABCD中,AB∥CD,(2分)
∴∠BAF=∠AED.(4分)
∵BF⊥AE,
∴∠AFB=90°.
∴∠AFB=∠D=90°.(5分)
∴△ABF∽△EAD.(6分)
點評:考查相似三角形的判定定理,關鍵是找準對應的角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,已知P是矩形ABCD的內(nèi)的一點.求證:PA2+PC2=PB2+PD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,已知E是矩形ABCD的邊CD上一點,BF⊥AE于F,試說明:△ABF∽△EAD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知E是矩形ABCD的邊AD上的點,AE:ED=1:3,CE與BA的延長線交于點F.如果三角形AEF的面積為1,那么四邊形ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知O是矩形ABCD內(nèi)一點,且OA=1,OB=3,OC=4,那么OD的長為( 。
A、2
B、2
2
C、2
3
D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知OABC是矩形,點A在x軸的正半軸上,點C在y軸的正半軸上,OC=6cm,OA=8cm.點P從點A開始沿邊AO向點O以1cm/s的速度移動,與此同時,點Q從點C開始沿CB向點B以1cm/s的速度移動.如果P、Q分別從A,C同時出發(fā).

(1)①若連接OQ、PB,試判斷四邊形OPBQ的形狀,并說明理由;
②若連接PQ、OB,經(jīng)過幾秒?使得QP⊥OB;
(2)點K在x軸上,經(jīng)過幾秒時?△PQK是等邊三角形,并求點K的坐標.
(3)點E為OC邊上的一動點,試說明PE+QE的最小值是一個定值,并求出這個值.

查看答案和解析>>

同步練習冊答案