精英家教網 > 初中數學 > 題目詳情
(2005•陜西)已知:x1、x2是關于x的方程x2+(2a-1)x+a2=0的兩個實數根且(x1+2)(x2+2)=11,求a的值.
【答案】分析:欲求a的值,代數式(x1+2)(x2+2)=x1x2+2(x1+x2)+4,根據一元二次方程根與系數的關系,可以求得兩根之積或兩根之和,代入即可得到關于a的方程,即可求a的值.
解答:解:∵x1、x2是方程x2+(2a-1)x+a2=0的兩個實數根,
∴x1+x2=1-2a,x1•x2=a2,
∵(x1+2)(x2+2)=11,
∴x1x2+2(x1+x2)+4=11,
∴a2+2(1-2a)-7=0,
即a2-4a-5=0,
解得a=-1,或a=5.
又∵△=(2a-1)2-4a2=1-4a≥0,
∴a≤
∴a=5不合題意,舍去.
∴a=-1.
點評:將根與系數的關系與代數式變形相結合解題是一種經常使用的解題方法.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2005•陜西)已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點C,BD⊥PD,垂足為D,連接BC.
求證:(1)BC平分∠PBD;
(2)BC2=AB•BD.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《相交線與平行線》(02)(解析版) 題型:解答題

(2005•陜西)已知:直線a∥b,P、Q是直線a上的兩點,M、N是直線b上兩點.
(1)如圖①,線段PM、QN夾在平行直線a和b之間,四邊形PMNQ為等腰梯形,其兩腰PM=QN.請你參照圖①,在圖②中畫出異于圖①的一種圖形,使夾在平行直線a和b之間的兩條線段相等;
(2)我們繼續(xù)探究,發(fā)現用兩條平行直線a、b去截一些我們學過的圖形,會有兩條“曲線段相等”(曲線上兩點和它們之間的部分叫做“曲線段”.把經過全等變換后能重合的兩條曲線段叫做“曲線段相等”).請你在圖③中畫出一種圖形,使夾在平行直線a和b之間的兩條曲線段相等;
(3)如圖④,若梯形PMNQ是一塊綠化地,梯形的上底PQ=m,下底MN=n,且m<n.現計劃把價格不同的兩種花草種植在S1、S2、S3、S4四塊地里,使得價格相同的花草不相鄰.為了節(jié)省費用,園藝師應選擇哪兩塊地種植價格較便宜的花草?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年陜西省中考數學試卷(大綱卷)(解析版) 題型:解答題

(2005•陜西)已知:直線a∥b,P、Q是直線a上的兩點,M、N是直線b上兩點.
(1)如圖①,線段PM、QN夾在平行直線a和b之間,四邊形PMNQ為等腰梯形,其兩腰PM=QN.請你參照圖①,在圖②中畫出異于圖①的一種圖形,使夾在平行直線a和b之間的兩條線段相等;
(2)我們繼續(xù)探究,發(fā)現用兩條平行直線a、b去截一些我們學過的圖形,會有兩條“曲線段相等”(曲線上兩點和它們之間的部分叫做“曲線段”.把經過全等變換后能重合的兩條曲線段叫做“曲線段相等”).請你在圖③中畫出一種圖形,使夾在平行直線a和b之間的兩條曲線段相等;
(3)如圖④,若梯形PMNQ是一塊綠化地,梯形的上底PQ=m,下底MN=n,且m<n.現計劃把價格不同的兩種花草種植在S1、S2、S3、S4四塊地里,使得價格相同的花草不相鄰.為了節(jié)省費用,園藝師應選擇哪兩塊地種植價格較便宜的花草?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2005年陜西省中考數學試卷(大綱卷)(解析版) 題型:選擇題

(2005•陜西)已知圓錐的底面周長為58cm,母線長為30cm,求得圓錐的側面積為( )
A.870cm2
B.908cm2
C.1125cm2
D.1740cm2

查看答案和解析>>

同步練習冊答案