如圖△ABC的內(nèi)接圓于⊙O,∠C=45°,AB=4,則⊙O 的半徑為(    )
A.B.4 C.D.5
A

試題分析:連接OA、OB,根據(jù)圓周角定理可得∠AOB=90°,即可得到△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可求得結(jié)果.
連接OA、OB

∵∠C=45°
∴∠AOB=90°
∵OA=OB
∴△AOB為等腰直角三角形
∵AB=4
∴OA=OB=
故選A.
點(diǎn)評(píng):解答本題的關(guān)鍵是熟記同弧或等弧所對(duì)是圓周角都相等,均等于所對(duì)圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,A、B、C是⊙O上的三點(diǎn),已知∠O=60º,則∠C=(    )

A.20º    B.25º    C.30º    D.45º

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC與△ADE都是等腰直角三角形,∠ACB和∠E都是直角,點(diǎn)CAD邊上,BC=,把△ABC繞點(diǎn)A 按順時(shí)針?lè)较蛐D(zhuǎn)n 度后恰好與△ADE重合,則n的值是         ,點(diǎn)C經(jīng)過(guò)的路線的長(zhǎng)是         ,線段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分的面積是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面直角坐標(biāo)系中,原點(diǎn)O是正三角形ABC外接圓的圓心,點(diǎn)A軸的正半軸上,△ABC的邊長(zhǎng)為6.以原點(diǎn)O為旋轉(zhuǎn)中心將△ABC沿逆時(shí)針?lè)较蛐D(zhuǎn)角,得到△,點(diǎn)、、分別為點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn).

(1)當(dāng)=60時(shí),
①請(qǐng)?jiān)趫D1中畫(huà)出△;
②若AB分別與、交于點(diǎn)D、E,則DE的長(zhǎng)為_(kāi)______;
(2)如圖2,當(dāng)AB時(shí),分別與AB、BC交于點(diǎn)FG,則點(diǎn)的坐標(biāo)為         _____,△FBG的周長(zhǎng)為_(kāi)____,△ABC與△重疊部分的面積為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩圓的半徑分別為2和3,若圓心距為5,則這兩圓的位置關(guān)系是
A.相交 B.外離C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC 內(nèi)接于⊙O,∠C=,AB=8,則⊙O的直徑為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長(zhǎng)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上。

(1)若,求的度數(shù);
(2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙0的直徑,點(diǎn)C在⊙0上,∠B=65°,則∠A=(     )
 
A.20°B.25°C.30°D.35°

查看答案和解析>>

同步練習(xí)冊(cè)答案