精英家教網 > 初中數學 > 題目詳情
求證:順次連接矩形四邊中點所得的四邊形是菱形.
【答案】分析:因為題中給出的條件是中點,所以可利用三角形中位線性質,以及矩形對角線相等去證明四條邊都相等,從而說明是一個菱形.
解答:已知:如圖,E、F、G、H分別為矩形ABCD四邊的中點.
求證:四邊形EFGH為菱形.
證明:連接AC、BD,
在△ABD中,
∵AH=HD,AE=EB
∴EH=BD,同理FG=BD,HG=AC,EF=AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四邊形EFGH為菱形.
點評:菱形的判別方法是說明一個四邊形為菱形的理論依據,常用三種方法:①定義,②四邊相等,③對角線互相垂直平分.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•舟山)以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(四川成都卷)數學解析版 題型:解答題

(2011•舟山)以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數學 來源:浙江省中考真題 題型:解答題

以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH。
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.

(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);

(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),

①試用含α的代數式表示∠HAE;

②求證:HE=HG;

③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

同步練習冊答案