在等邊△ABC中,BC=5,P在直線BC上,且BP:PC=1:4,AP的垂直平分線交AB于點M,交△ABC的另一邊于點N,那么AN的長是   
【答案】分析:連接PM,PN,證明△AMN∽≌△PMN,再證△MPB∽△PNC,即可得出結(jié)論.
解答:解:連接PM,PN,
∵MN垂直平分AP,
∴AM=MP,AN=PN,又MN為公共邊,
∴△AMN∽≌△PMN(SSS),
∴∠MPN=∠BAC=60°,
∵∠BPM+∠CPN=120°,∠BPM+∠BMP=120°,
∴∠BMP=∠CPN,
由∠B=∠C=60°,
∴△MPB∽△PNC,
∵BC=5,且BP:PC=1:4,
∴AN=3.
點評:本題主要考查了相似三角形的判定及性質(zhì)以及等邊三角形的性質(zhì)等問題,能夠熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,在等邊△ABC中,D、E分別是AB、AC上的點,且AD=CE,則∠BCD+∠CBE=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,AC=8,點O在AC上,且AO=3,點P是AB上一動點,連接OP,將線段OP繞點O逆時針旋轉(zhuǎn)60°得到線段OD.要使點D恰好落在BC上,則AP的長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在等邊△ABC中,P是BC邊上一點,D為AC上一點,且∠APD=60°,BP=3,CD=2,則△CPD,△BAP,△APD的面積比為
4:9:14
4:9:14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,試求AB的長.

查看答案和解析>>

同步練習(xí)冊答案