如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.
(2)①過點B作BN⊥PS,垂足為N,可以設(shè)P的坐標(biāo)是(a,a2+1),根據(jù)勾股定理就可以用a表示出PB=PS的長,由此可以證明;
②判斷△SBR的形狀,根據(jù)①同理可知BQ=QR,根據(jù)等邊對等角就可以證明∠SBR=90度,則△SBR為直角三角形;
③若以P、S、M為頂點的三角形與以Q、M、R為頂點的三角形相似,有△PSM∽△MRQ和△PSM∽△QRM兩種情況,根據(jù)相似三角形的對應(yīng)邊的比相等就可以求出.
解答: 解:(1)方法一:
∵B點坐標(biāo)為(0.2),
∴OB=2,
∵矩形CDEF面積為8,
∴CF=4.
∴C點坐標(biāo)為(﹣2,2).F點坐標(biāo)為(2,2).
設(shè)拋物線的解析式為y=ax2+bx+c.
其過三點A(0,1),C(﹣2.2),F(xiàn)(2,2).
得,
解這個方程組,得a=,b=0,c=1,
∴此拋物線的解析式為y=x2+1.(3分)
方法二:
∵B點坐標(biāo)為(0.2),
∴OB=2,
∵矩形CDEF面積為8,
∴CF=4.
∴C點坐標(biāo)為(﹣2,2),
根據(jù)題意可設(shè)拋物線解析式為y=ax2+c.
其過點A(0,1)和C(﹣2.2)
解這個方程組,得a=,c=1
此拋物線解析式為y=x2+1.
(2)①證明:如圖(2)過點B作BN⊥PS,垂足為N.
∵P點在拋物線y=x2+1上.可設(shè)P點坐標(biāo)為(a,a2+1).
∴PS=a2+1,OB=NS=2,BN=﹣a.
∴PN=PS﹣NS=,
在Rt△PNB中.
PB2=PN2+BN2=(a2﹣1)2+a2=(a2+1)2
∴PB=PS=.(6分)
②根據(jù)①同理可知BQ=QR.
∴∠1=∠2,
又∵∠1=∠3,
∴∠2=∠3,
同理∠SBP=∠5(7分)
∴2∠5+2∠3=180°
∴∠5+∠3=90°
∴∠SBR=90度.
∴△SBR為直角三角形.(8分)
③方法一:如圖(3)作QN⊥PS,
設(shè)PS=b,QR=c,
∵由①知PS=PB=b.QR=QB=c,PQ=b+c.PN=b﹣c.
∴QN2=SR2=(b+c)2﹣(b﹣c)2
∴.(9分)
假設(shè)存在點M.且MS=x,則MR=.
若使△PSM∽△MRQ,
則有.
即x2﹣2x+bc=0
∴.
∴SR=2
∴M為SR的中點.(11分)
若使△PSM∽△QRM,
則有.
∴.
∴.
∴M點即為原點O.
綜上所述,當(dāng)點M為SR的中點時.△PSM∽△MRQ;
當(dāng)點M為原點時,△PSM∽△MRQ.(13分)
方法二:
若以P、S、M為頂點的三角形與以Q、M、R為頂點的三角形相似,
∵∠PSM=∠MRQ=90°,
∴有△PSM∽△MRQ和△PSM∽△QRM兩種情況.
當(dāng)△PSM∽△MRQ時.∠SPM=∠RMQ,∠SMP=∠RQM.
由直角三角形兩銳角互余性質(zhì).知∠PMS+∠QMR=90度.
∴∠PMQ=90度.(9分)
取PQ中點為T.連接MT.則MT=PQ=(QR+PS).(10分)
∴MN為直角梯形SRQP的中位線,
∴點M為SR的中點(11分)
∴=1
當(dāng)△PSM∽△QRM時,
∴QB=BP
∵PS∥OB∥QR
∴點M為原點O.
綜上所述,當(dāng)點M為SR的中點時,△PSM∽△MRQ;
當(dāng)點M為原點時,△PSM∽△QRM.(13分)
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com