為了測(cè)得聊城鐵塔的高度,小明在離鐵塔10米處的點(diǎn)C測(cè)得塔頂A的仰角為α,小亮在離鐵塔25米處的點(diǎn)D測(cè)得塔頂A的仰角為β(如圖),恰巧α+β=90度.小明和小亮很快求出了鐵塔AB的高度.你知道他倆是怎樣求出來(lái)的嗎?請(qǐng)寫(xiě)出你的解題過(guò)程(結(jié)果精確到0.01米).

解:在Rt△ABC中,AB=10tanα;
在Rt△ABD中,AB=25tanβ;
∵α+β=90?,∴AB=25tan(90?-α)=25cotα,
∴AB2=10tanα•25cotα=250
∴AB==5×3.162=15.81(米)
答:鐵塔的高度為15.81米.
分析:首先根據(jù)題意分析圖形:本題涉及到兩個(gè)直角三角形△ABD、△ABC,應(yīng)利用其公共邊AB構(gòu)造等量關(guān)系,借助DC=DB-BC=15,α+β=90°;構(gòu)造方程關(guān)系式,進(jìn)而可求出答案.
點(diǎn)評(píng):本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城)被譽(yù)為東昌三寶之首的鐵塔,始建于北宋時(shí)期,是我市現(xiàn)存的最古老的建筑.鐵塔由塔身和塔座兩部分組成.為了測(cè)得鐵塔的高度,小瑩利用自制的測(cè)角儀,在C點(diǎn)測(cè)得塔頂E的仰角為45°,在D點(diǎn)測(cè)得塔頂E的仰角為60°.已知測(cè)角儀AC的高為1.6m,CD的長(zhǎng)為6m,CD所在的水平線CG⊥EF于點(diǎn)G.求鐵塔EF的高(精確到0.1m).

查看答案和解析>>

同步練習(xí)冊(cè)答案